Skip to main content
Log in

Influence of the plasma-immersion ion implantation of titanium on the structure, morphology, and composition of the surface layer of Zr–1Nb alloy

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of investigating the plasma-immersion ion implantation of titanium into Zr–1Nb alloy from arc-discharge plasma are presented. The investigations are performed using 1.5-kV bias voltage applied to the sample by means of a coaxial plasma filter for 5, 15, and 30 min. Scanning electron and atomic-force microscopy data demonstrate that, after implantation, grains with sizes of ~50–100 nm and craters with lateral sizes varying from ~1 μm to vanishingly small values are detected on the surface. Energy-dispersive X-ray spectroscopy data indicate the formation of an oxide film under titanium implantation. It follows from X-ray diffraction analysis that implanted titanium is in the dissolved state and the crystal-lattice-parameter ratio c/a increases after ion implantation. The layer-by-layer elemental analysis of the implanted layer performed via optical emission spectroscopy is evidence that the titanium-concentration maximum is shifted to larger depths with incresing implantation duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. F. Silva, D. S. dos Santos, A. F. Robeiro, et al., Defect Diffus. Forum 297–301, 722 (2010).

    Article  Google Scholar 

  2. A. Zielinski and S. Sobieszczyk, Int. J. Hydrogen Energy 36, 8619 (2011).

    Article  Google Scholar 

  3. K. V. Mani Krishna, A. Sain, I. Samajdar, et al., Acta Mater. 54, 4665 (2006).

    Article  Google Scholar 

  4. Pierron O. N., Koss D. A., Motta A. T., Chan K. S. // J. Nucl. Materials. 2003. V. 322. Issue 1. P. 21–35. https://doi.org/10.1016/S0022-3115(03)00299-X.

  5. N. N. Nikitenkov, A. N. Sutygina, I. A. Shulepov, and E. B. Kashkarov, Bull. Russ. Acad. Sci.: Phys. 80 (2), 117 (2016). doi 10.3103/S1062873816020222

    Article  Google Scholar 

  6. A. Galerie, M. Caillet, and M. Pons, Mater. Sci. Eng. 69, 329 (1985).

    Article  Google Scholar 

  7. J. R. Conrad, J. L. Radtke, R. A. Dodd, et al., J. Appl. Phys. 62 4591 (1987).

    Google Scholar 

  8. J. R. Conrad, R. A. Dodd, S. Han, et al., J. Vac. Sci. Technol. 8, 3146 (1990).

    Article  Google Scholar 

  9. S. T. Picraux, in Surface Engineering: Surface Modification of Materials, Vol. 85 of Nato Science Series E: (Springer, Amsterdam, 1984), p.3.

    Book  Google Scholar 

  10. N. N. Nikitenkov, A. N. Sutygina, I. A. Shulepov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 81 (1), 012018 (2015). doi 10.1088/1757-899X/81/1/012018

    Article  Google Scholar 

  11. I. Tsyganov, E. Wieser, W. Matz, et al., Thin Solid Films 376, 188 (2000).

    Article  Google Scholar 

  12. J. E. Daalder, J. Phys. D: Appl. Phys. 9, 2379 (1975).

    Article  Google Scholar 

  13. C. W. Kimblin, J. Appl. Phys. 44 (7), 3074 (1973).

    Article  Google Scholar 

  14. F. Rysanek, L. Rodney, and R. L. Burton, IEEE Trans. Plasma Sci. 36 (5), 2147 (2008).

    Article  Google Scholar 

  15. I. B. Stepanov, A. I. Ryabchikov, N. A. Nochovnaya, et al., Surf. Coat. Technol. 201, 596 (2007).

    Google Scholar 

  16. E. B. Kashkarov, N. N. Nikitenkov, M. S. Syrtanov, et al., Appl. Surf. Sci. 370, 142 (2016).

    Article  Google Scholar 

  17. A. N. Sutygina, E. B. Kashkarov, N. N. Nikitenkov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 110 (1), 012047 (2016). doi 10.1088/1757-899X/110/1/012047

    Article  Google Scholar 

  18. D. M. Sanders and A. Anders, Surf. Coat. Technol. 133–134, 78 (2000).

    Article  Google Scholar 

  19. A. I. Ryabchikov, D. O. Sivin, A. I. Bumagina, et al., Fiz. Khim. Obrab. Mater., No. 3, 18 (2013).

    Google Scholar 

  20. V. V. Beregovskii, D. V. Dukhopel’nikov, M. K. Marakhtanov, et al., Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G. I. Nosova, No. 4, 29 (2008).

    Google Scholar 

  21. G. N. Makarov, Usp. Fiz. Nauk, No. 176, 121 (2006).

    Article  Google Scholar 

  22. Y. Li, S. Wei, X. Cheng, T. Zhang, et al., Surf. Coat. Technol. 202, 3017 (2008).

    Article  Google Scholar 

  23. D. Q. Peng, X. D. Bai, F. Pana, et al., Appl. Surf. Sci. 252, 2196 (2006).

    Article  Google Scholar 

  24. I. A. Kurzina, I. A. Bozhko, G. Yu. Yushkov, et al., Fundam. Probl. Sovrem. Materialoved. 9 (4), 422 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sutygina.

Additional information

Original Russian Text © A.N. Sutygina, N.N. Nikitenkov, E.B. Kashkarov, M.S. Syrtanov, L. Volesky, P. Louda, T.S. Priamushko, V.S. Sypchenko, A. Hashhash, 2017, published in Poverkhnost’, 2017, No. 4, pp. 74–79.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutygina, A.N., Nikitenkov, N.N., Kashkarov, E.B. et al. Influence of the plasma-immersion ion implantation of titanium on the structure, morphology, and composition of the surface layer of Zr–1Nb alloy. J. Surf. Investig. 11, 452–457 (2017). https://doi.org/10.1134/S1027451017020343

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017020343

Keywords

Navigation