Skip to main content
Log in

Plasma Chemical Functionalisation of a Cameroonian Kaolinite Clay for a Greater Hydrophilicity

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A Cameroonian kaolinite powder was treated with gliding arc plasma in order to increase the amount of hydroxyl functional groups present on its external surfaces. The functional changes that occurred were monitored by Fourier transform infrared spectroscopy. The crystalline changes were followed by the X-ray diffraction. The ionisation effect, acid effect, and water solubility of the treated samples were also evaluated. Results showed that there is breaking of the bonds in the Si–O–Si and Si–O–Al groups, followed by the formation of new aluminol (Al–OH) and silanol (Si–OH) groups at the external surface of kaolinite after exposing the clay to the gliding arc plasma. The increase in hydroxyl groups on the surface of kaolinite leads to the increase of its hydrophilicity. Moreover, new charges appear on its surfaces and no significant change in crystallinity has occurred. This study shows that clays in powder form being can effectively be functionalised by gliding arc plasma in spatial post discharge processing mode. Knowing that the treatment in spatial post discharge offers the possibility to process large amounts of clay, this work is of great interest to the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yavuz O, Saka C (2013) Surface modification with cold plasma application on kaolin and its effects on the adsorption of methylene blue. Appl Clay Sci 85:96–102

    Article  CAS  Google Scholar 

  2. Sahin O, Kaya M, Saka C (2015) Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Appl Clay Sci 116–117:46–53

    Article  Google Scholar 

  3. Tonle I-K, Ngameni E, Njopwouo D, Carteret C, Walcarius A (2003) Functionalisation of natural smectite-type clays by grafting with organosilanes: physico chemical characterization and application to mercury (II) uptake. PhysChemChemPhys 5:4951–4961

    CAS  Google Scholar 

  4. Yavuz O, Altunkaynak Y, Guzel F (2004) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952

    Article  Google Scholar 

  5. Celini N (2004) Traitement des argiles par plasma froid pour leur utilisation comme charges de nanocomposite argile-polymère; Thèse de doctorat Ph.D soutenu en à l’Université du Maine Faculté des Sciences UMR CNRS 6120 Polymères, Colloïdes, Interfaces

  6. Sigg J (1991) Les produits de terre cuite. Septima, Paris

    Google Scholar 

  7. Ciullo P-A (1996) Industrial minerals and their uses: a handbook and formulary. William Andrew Inc., New Jersey

    Google Scholar 

  8. Tanable K, Holderich W (1999) Industrial application of solid acid–base catalysts. Apply Catal A Gen 181:399–434

    Article  Google Scholar 

  9. Braggs B, Ralston J, Smart RSC (2000) Surface modification of kaolinite. United States Patent no. 6,071,335

  10. Ming H, Spark KM, Smart RSC (2001) Comparison of radios frequency plasma and ion beam induced surface modification of kaolinite. J Phys Chem B 105:3196–3203

    Article  CAS  Google Scholar 

  11. Valdre G, Malferrari D, Marchetti D, Brigatti MF (2007) The effect, of different plasma gas environments on vermiculite layer. Appl Clay Sci 35:76–84

    Article  CAS  Google Scholar 

  12. Djowe AT, Laminsi S, Njopwouo D, Acayanka E, Gaigneaux EM (2013) Surface modification of smectite clay induced by non-thermal gliding arc plasma at atmospheric pressure. Plasma Chem Plasma Process 33:707–723

    Article  CAS  Google Scholar 

  13. Hnatiuc E (2002) Procédés électriques de mesure et de traitement des polluants. Tec & Doc, Paris

    Google Scholar 

  14. Brisset JL, Hnatiuc E (2012) Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem Plasma Process 32:655–674

    Article  CAS  Google Scholar 

  15. Burlicaa R, Kirkpatrickb MJ, Locke BR (2006) Formation of reactive species in gliding arc discharges with liquid water. J Electrostat 64:35–43

    Article  Google Scholar 

  16. De Baerdemaeker F, Simek M, Clupek M, Lukes P, Leys C (2006) Hydrogen peroxide production in capillary underwater discharges. Czech J Phys 56:B1132–B1139

    Article  Google Scholar 

  17. Lesueur H, Czernichowski A, Chapelle J (1988) A device for the formation of low temperature plasma by means of gliding electric discharges. French Patent no 2,639,172

  18. Czernichowski A (2001) Glidarc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases. Oil Gas Sci Technol-Rev IFP6:181–198

    Article  Google Scholar 

  19. Njoya D, Elimbi A, Nkoumbou C, Njoya A, Njopwouo D, Lecompte G, Yvon J (2007) Contribution à l’étude physico-chimique et minéralogique des argiles de Mayouom (Cameroun). Ann Chim Sci Mater 32:55–68

    Article  CAS  Google Scholar 

  20. Boudchicha MR (2010) Etude de la cristallisation et des propriétés mécaniques et diélectriques de céramiques préparés à partir de kaolin-dolomite. Thèse de Doctorat, Université El-HadjLakhder –BATNA (Algérie)

  21. Socrates G (1994) Infrared characteristic group frequencies tables and charts. Wiley, New York

    Google Scholar 

  22. Marel H, Van Der W, Beutelspucher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, New York

    Google Scholar 

  23. Lazarev AN (1972) Vibrational spectra and structure of silicates. Consultant Bureau, New York (English Translation by G. D. Archard, V. C. Farmer)

    Google Scholar 

  24. Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London

    Book  Google Scholar 

  25. Russell JD, Fraser AR (1994) Clay mineralogy-spectroscopic and chemical determinative methods. Chapman & Hall, New York

    Google Scholar 

  26. Fanmoe J, Kamgang JO, Moussa D, Brisset JL (2003) Application De L’arc Glissant D’air Humide Au Traitement Des Solvants Industriels : Cas Du 1,1,1-Trichloroethane. Phys Chem News 14:1–4

    CAS  Google Scholar 

  27. Schoonheydt RA, Johnston CT (2006) Development in clay science (surface and interface chemistry of clay). In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Elsevier, Amsterdam

  28. Ming H, Spark KM (2003) Radio frequency plasma-induced hydrogen bonding on kaolinite. J Phys Chem B 107:694–702

    Article  CAS  Google Scholar 

  29. Lapcik L, Lapcikova B, Krasny I, Kupska I, Greenwood W, Waters E (2012) Effect of low temperature air plasma treatment on wetting properties of kaolinite powders. Plasma Chem Plasma Process 32:845–858

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Jean-Louis Brisset of the Université de Rouen (France) for the plasma reactor support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Laminsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sop Tamo, B., Kamgang-Youbi, G., Acayanka, E. et al. Plasma Chemical Functionalisation of a Cameroonian Kaolinite Clay for a Greater Hydrophilicity. Plasma Chem Plasma Process 36, 1449–1469 (2016). https://doi.org/10.1007/s11090-016-9731-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9731-4

Keywords

Navigation