Skip to main content
Log in

Surface Modification of Smectite Clay Induced by Non-thermal Gliding Arc Plasma at Atmospheric Pressure

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Smectite clay from Sabga (west-Cameroon) was treated in aqueous suspension by gliding arc plasma to modify its surface properties. The evolution of the modifications was followed with the exposure time and post-discharge duration using Fourier transformed infra red spectroscopy and scanning electron microscopy. X-ray diffraction and nitrogen physisorption analyses were also performed to evaluate if both crystalline and textural properties of the material are affected by the treatment. The results obtained show that the plasma treatment causes the breakdown of structural bounds at the clay surface and induces the formation of new hydroxyl groups (Si–OH and Al–OH) on the clay edges. Crystallinity, sheet structure and textural properties are not significantly affected by the plasma treatment. However, it should be noted that an intensive treatment of the clay lowers the pH of the suspension, which subsequently induces an acid attack of the clay. In such case, the specific surface area of the clay increases. This study demonstrates that gliding arc plasma treatments can be used to activate clay minerals for environmental application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ciullo P-A (1996) Industrial Minerals and their uses: a handbook and formulary. William Andrew Inc., New Jersey

    Google Scholar 

  2. Njopwouo D, Roques G, Wandji R (1988) A contribution to the study of the catalytic action of clays on the polymerisation of styrene: II. Reaction mechanism. Clay Miner 23:35–43

    Article  CAS  Google Scholar 

  3. Murray H (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–2214

    Article  CAS  Google Scholar 

  4. Torres Sanchez R-M, Genet M-J, Gaigneaux E-M, Dos Santos Afonso M, Yunes S (2011) Benzimidazole adsorption on the external and interlayer surfaces of raw and treated montmorillonite. Appl Clay Sci 53:366–373

    Article  CAS  Google Scholar 

  5. Onal M (2007) Changes in crystal structure, thermal behavior and surface area of bentonite by acid activation. Commun Fac Sci Univ Ank B 53:1–14

    CAS  Google Scholar 

  6. Bergaya F, Aouad A, Mandalia T (2006) Pillared clays and clay minerals. Handb Clay Sci 1:393–421

    Article  CAS  Google Scholar 

  7. Tonle I-K, Ngameni E, Njopwouo D, Carteret C, Walcarius A (2003) Functionalization of natural smectite-type clays by grafting with organosilanes: physico chemical characterization and application to mercury (II) uptake. Phys Chem Chem Phys 5:4951–4961

    Article  CAS  Google Scholar 

  8. Benstaali B, Cheron B, Addou A, Brisset J-L (1999) Spectral investigation of a gliding arc in humid air: a key for chemical applications. In: Proceedings of the IUPAC Congress ISPC-14 (Int. Symp. Plasma Chem.; Praga, Czech Rep. 2), pp 939–944

  9. Czernichowski A, Nassar H, Ranaivoloarimanana A, Fridman A, Simek M, Musiol K, Pawelec E, Dittrichova L (1996) Spectral and electrical diagnostics of the gliding arc. Acta Phys Pol, A 89:595–603

    CAS  Google Scholar 

  10. Hnatiuc E (2002) Electrical methods of measurement and treatment of pollutants. Tech & Doc, Lavoisier, Paris

    Google Scholar 

  11. Benstaali B, Boubert P, Cheron B, Addou A, Brisset J-L (2002) Density and rotational temperature measurements of the NO and OH radicals produced by a gliding arc in humid air and their interaction with aqueous solutions. Plasma Chem Plasma Process 22:553–571

    Article  CAS  Google Scholar 

  12. Delair L, Brisset J-L, Cheron B (2001) Spectral, electrical and dynamic analysis of a 50 Hz air gliding arc. J High Temp Mater Process 5:381–402

    CAS  Google Scholar 

  13. Fanmoe J, Kamgang J-O, Moussa D, Brisset J-L (2003) Application de l’arc glissant d’air humide au traitement des solvants industriels: cas du 1,1,1-trichloroethane. Phys Chem News 14:1–4

    CAS  Google Scholar 

  14. Tchoumkwe C–C, Kuete Saa D, Laminsi S, Njopwouo D, Hnatiuc E (2012) Plasmachemical decolouration of 2, 4-dinitrophenylhydrazine by gliding electric discharge at atmospheric pressure. Int J Curr Res 4:70–75

    Google Scholar 

  15. Njoyim-Tamunganga E, Laminsi S, Ghogomu P, Njopwouo D, Brisset J-L (2011) Pollution control of surface waters by coupling gliding discharge treatment with incorporated oyster shell powder. Chem Eng J 173:303–308

    Article  Google Scholar 

  16. Katsumura Y (1998) NO2 and NO3 radicals in radiolysis of nitric acid solutions. In: Alfassi Z (ed) N centered radicals, Chap 12. Wiley, Chichester, pp 393–412

    Google Scholar 

  17. Doubla A, Bouba L, Fotso M, Brisset J-L (2007) Plasmachemical decolourization of bromothymol blue by gliding arc discharge. Dyes Pigm 77:118–124

    Article  Google Scholar 

  18. Pascal S, Moussa D, Hnatiuc E, Brisset J-L (2010) Plasma chemical degradation of phosphorous-containing warfare agents stimulants. J Hazard Mater 175:1037–1041

    Article  CAS  Google Scholar 

  19. Moussa D, Brisset J-L (2003) Disposal of spent tributylphosphate by gliding arc plasma. J Hazard Mater 102:189–200

    Article  CAS  Google Scholar 

  20. Eren E (2009) Removal of basic dye by modified Unye bentonite. J Hazard Mater 162:1355–1363

    Article  CAS  Google Scholar 

  21. He H, Ma Y, Zhu J, Yuang P, Qing Y (2010) Organoclays prepared from montmorillonitees with different cation exchange capacity and surfactant configuration. Appl Clay Sci 48:67–72

    Article  CAS  Google Scholar 

  22. Djoufac Woumfo E, Kamga R, Figueras F, Njopwouo D (2007) Acid activation and bleaching capacity of some Cameroonian smectite soil clays. Appl Clay Sci 37:149–156

    Article  Google Scholar 

  23. Lesueur H, Czernichowsky A, Chapelle J (1988) A device for the formation of low temperature plasma by means of gliding electric discharges. Fr Pat 2639172

  24. Czernichowski A (2001) Glidarc assisted preparation of the synthesis gas from natural and waste hydrocarbons gases. Oil & gas science and technology—Rev. IFP 6:181–198

    Google Scholar 

  25. Madejόva J, Bujdak J, Janek M, Komadel P (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochimica Acta Part A 54:1397–1406

    Article  Google Scholar 

  26. Madejόva J, Komadel P (2001) Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner 49:410–432

    Article  Google Scholar 

  27. Ming H, Spark K-M (2003) Radio frequency plasma-induced hydrogen bonding on kaolinite. J Phys Chem 107:694–702

    CAS  Google Scholar 

  28. Laminsi S, Acayanka E, Ndifon P-T, Nzali S, Brisset J-L (2012) Direct impact and delayed post-discharge chemical reactions of FeII complexes induced by non-thermal plasma. Deswater 37:38–45

    CAS  Google Scholar 

  29. Laminsi S, Acayanka E, Ndifon P-T, Tiya A-D, Brisset J-L (2012) Plasmachemical dissociation and degradation of naphtol green B complex. Env Eng Manag J 11:1461–1466

    CAS  Google Scholar 

  30. Dugas V, Chevalier Y (2003) Surface hydroxylation and silane grafting on fumed and thermal silica. J Colloid Interface Sci 264:354–361

    Article  CAS  Google Scholar 

  31. Khraisheh M-A-M, Al-Ghouti M-A, Allen S-J, Ahmad M-N (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39:922–932

    Article  CAS  Google Scholar 

  32. Chang Ming D, Dong Wei H, Hong Xia L, Mu Dan Xiao, Kui W, Lu Z, Zhi Yi Li, Teng Fei C, Jian Min M, Dong G, Yu Hao H, Shang Kun L, Liao Y, Chuang Rong Z (2013) Adsorption of acid orange II from aqueous solution by plasma modified activated carbon fibers. Plasma chem. Plasma process 33:65–82

  33. Douglas L-A, Fiessinger F (1971) Degradation of clay minerals by H2O2 treatments to oxidize organic matter. Clays Clay Miner 19:67–68

    Article  CAS  Google Scholar 

  34. Sing K-S-W, Everett D-H, Haul R-A-W, Moscou L, Pierotti R-A, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  35. Adkins B-D, Davis B-H (1988) Comparison of nitrogen adsorption and mercury penetration results I. Pore volume and surface area obtained for type IV isotherms. Adsorpt Sci Technol 5:76–93

    CAS  Google Scholar 

  36. Nguetnkam J-P, Kamga R, Villiéras F, Ekodeck G-E, Razafitianamaharavo A, Yvon J (2005) Assessment of surface areas of silica and clay in acid-leached clay materials using concepts of adsorption on heterogeneous surfaces. J Colloid Interface Sci 289:104–115

    Article  CAS  Google Scholar 

  37. Temuujin J, Jadambaa T-S, Burmaa G, Erdenechimeg S, Amarsanaa J, MacKenzie K-J-D (2004) Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceram Int 30:251–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the “Université catholique de Louvain” (Belgium) for the grant awarded to A.T.D. in the frame of the fellowship “Coopération au développement” program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antoine Tiya Djowe or Eric M. Gaigneaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djowe, A.T., Laminsi, S., Njopwouo, D. et al. Surface Modification of Smectite Clay Induced by Non-thermal Gliding Arc Plasma at Atmospheric Pressure. Plasma Chem Plasma Process 33, 707–723 (2013). https://doi.org/10.1007/s11090-013-9454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9454-8

Keywords

Navigation