Skip to main content
Log in

Effects of Non-thermal Plasma Treatment on the Geopolymerization of Kaolin Clay

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Kaolin samples obtained from Cameroon were used to produce geopolymer binders. Prior to its application, the raw kaolin samples were activated through the gliding arc plasma treatment using both spatial post-discharge and direct mode. A mixture of sodium hydroxide and silicate was used as the alkaline solution. In order to study the influence of the modifications generated by the gliding arc plasma treatment on the geopolymerization process, X-ray diffraction, thermogravimetric analysis, differential scanning calorimeter and Fourier transform infrared spectroscopy were carried out. In addition, scanning electron microscopy, nitrogen physisorption and compression tests analysis were also carried out on the resulting geopolymer samples to access their mechanical performance. The results showed that the geopolymerization process was not completed at the curing temperature of 90 °C. Plasma spatial post-discharge mode treated kaolin led to 20.48% increase in compressive strength when compared with the geopolymer prepared from raw kaolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Davidovits J (1991) Geopolymers - inorganic polymeric new materials. J Therm Anal 37:1633–1656. https://doi.org/10.1007/BF01912193

    Article  CAS  Google Scholar 

  2. Abbas R, Al Khereby M, Ghorab HY, Elkhoshkhany N (2020) Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Techn Environ Policy 22:669–687. https://doi.org/10.1007/s10098-020-01811-4

    Article  CAS  Google Scholar 

  3. Komnitsas K, Zaharaki D (2007) Geopolymerisation : a review and prospects for the minerals industry. Miner Eng 20:1261–1277. https://doi.org/10.1016/j.mineng.2007.07.011

    Article  CAS  Google Scholar 

  4. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology : the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  5. Davidovits J (2011) Geopolymer chemistry and applications3rd edn. Institut Géopolymère, France

  6. Van Deventer JSJ, Provis JL, Duxson P, Lukey GC (2007) Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J Hazard Mater 139:506–513. https://doi.org/10.1016/j.jhazmat.2006.02.044

    Article  CAS  PubMed  Google Scholar 

  7. Naghizadeh A, Ekolu SO (2020) Effects of compositional and Physico – chemical mix design parameters on properties of Fly ash Geopolymer mortars. Silicon. https://doi.org/10.1007/s12633-020-00799-2

  8. Meftah N, Mahboub MS (2020) Spectroscopic characterizations of sand dunes minerals of El-Oued (northeast Algerian Sahara) by FTIR, XRF and XRD analyses. Silicon. 12:147–153. https://doi.org/10.1007/s12633-019-00109-5

    Article  CAS  Google Scholar 

  9. Tchadjie LN, Ekolu SO (2018) Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J Mater Sci 53:4709–4733. https://doi.org/10.1007/s10853-017-1907-7

    Article  CAS  Google Scholar 

  10. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59:247–266. https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  CAS  Google Scholar 

  11. Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2:309–317. https://doi.org/10.1016/S1466-6049(00)00041-6

    Article  CAS  Google Scholar 

  12. Elimbi A, Tchakoute HK, Njopwouo D (2011) Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr Build Mater 25:2805–2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055

    Article  Google Scholar 

  13. Heah CY, Kamarudin H, Al Bakri AM, Luqman M, Nizar IK, Liew YM (2011) Potential application of kaolin without Calcine as greener concrete : a review. Aust J Basic Appl Sci 5:1026–1035

    Google Scholar 

  14. B. Braggs, J. Ralston, R.S.C. Smart, Surface modification of kaolinite, WO96/017021, 1996

  15. Ming H, Spark KM, Smart RSC (2001) Comparison of radio-frequency-plasma- and ion-beam-induced surface modification of kaolinite. J Phys Chem B 105:3196–3203. https://doi.org/10.1021/jp0031496

    Article  CAS  Google Scholar 

  16. Tamo BS, Kamgang-Youbi G, Acayanka E, Simo LM, Tiya-Djowe A, Kuete-Saa D, Laminsi S, Tchadjie L (2016) Plasma chemical functionalisation of a cameroonian kaolinite clay for a greater hydrophilicity. Plasma Chem. Plasma Process. 36. https://doi.org/10.1007/s11090-016-9731-4

  17. Sop-Tamo B, Acayanka E, Boyom-Tatchemo WF, Nzali S, Kamgang-Youbi G, Laminsi S (2018) Gliding arc plasma pre-treatment of kaolin in spatial post-discharge mode for removal of reactive red 2 dye from aqueous solution. Water Sci Technol 78:1448–1458. https://doi.org/10.2166/wst.2018.419

    Article  CAS  PubMed  Google Scholar 

  18. 2005 EN196–1, Methods of testing cement - Part 1: Determination of strength. Eur Stand (2005) 1–33

  19. Rollet AP, Bouaziz R (1972) L’analyse thermique: l’examen du processus chimique. Gauthier-Villars

  20. A.B.B. Mohd Mustafa, Y.M. Liew, C.Y. Heah, F.M.T. Muhammad (2018) Clay-based materials in Geopolymer technology, in: Cem. Based Mater., Intech Open, p. 279. https://doi.org/10.5772/intechopen.74438

  21. A.A.& R.O.O. U.O.Aroke (2013) Fourier-transform infrared characterization of kaolin,Granite,Bentonite and barite. J Chem Inf Model 53:1689–1699. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  22. Liew YM, Kamarudin H, Al Bakri AMM, Luqman M, Khairul IN, Heah CY (2011) Investigating the possibility of utilization of kaolin and the potential of metakaolin to produce green cement for construction purposes – a review. Aust J Basic Appl Sci 5:441–449

    Google Scholar 

  23. Rees CA, Provis JL, Lukey GC, Van Deventer JSJ (2007) In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir. 23:9076–9082. https://doi.org/10.1021/la701185g

    Article  CAS  PubMed  Google Scholar 

  24. Tchadjié LN, Ekolu SO, Quainoo H, Tematio P (2021) Incorporation of activated bauxite to enhance engineering properties and microstructure of volcanic ash Geopolymer mortar composites. J Build Eng 41:102384. https://doi.org/10.1016/j.jobe.2021.102384

    Article  Google Scholar 

  25. Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24:1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023

    Article  Google Scholar 

  26. Yousef RI, El-eswed B, Alshaaer M, Khalili F, Rahier H (2012) Degree of reactivity of two kaolinitic minerals in alkali solution using zeolitic tuff or silica sand filler. Ceram Int 38:5061–5067. https://doi.org/10.1016/j.ceramint.2012.03.008

    Article  CAS  Google Scholar 

  27. Prud E, Michaud P, Joussein E, Rossignol S (2012) Influence of raw materials and potassium and silicon concentrations on the formation of a zeolite phase in a geopolymer network during thermal treatment. J Non-Cryst Solids 358:1908–1916. https://doi.org/10.1016/j.jnoncrysol.2012.05.043

    Article  CAS  Google Scholar 

  28. Zheng Z, Ma X, Zhang Z, Li Y (2019) In-situ transition of amorphous gels to Na-P1 zeolite in geopolymer: mechanical and adsorption properties. Constr Build Mater 202:851–860. https://doi.org/10.1016/j.conbuildmat.2019.01.067

    Article  CAS  Google Scholar 

  29. Tchakoute HK, Rüscher CH, Djobo JNY, Kenne BBD, Njopwouo D (2015) Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl Clay Sci 107:1–7. https://doi.org/10.1016/j.clay.2015.01.023

    Article  CAS  Google Scholar 

  30. Hounsi AD, Lecomte-nana GL, Djétéli G, Blanchart P (2013) Kaolin-based geopolymers : effect of mechanical activation and curing process. Constr Build Mater 42:105–113. https://doi.org/10.1016/j.conbuildmat.2012.12.069

    Article  Google Scholar 

  31. Kenne BBD, Elimbi A, Cyr M, Manga JD, Kouamo HT (2015) Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J Asian Ceram Soc 3:130–138. https://doi.org/10.1016/j.jascer.2014.12.003

    Article  Google Scholar 

  32. C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew, Effect of curing profile on kaolin-based geopolymers, Phys. Procedia. 22 (2011) 305–311. https://doi.org/10.1016/j.phpro.2011.11.048

  33. J.G.S. Van Jaarsveld, J.S.J. Van Deventer, A. Schwartzman, The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics, Miner. Eng. 12 (1999) 75–91. https://doi.org/10.1016/S0892-6875(98)00121-6

  34. Van Jaarsveld JGS, van Deventer JSJ, Lukey GC (2003) The characterisation of source materials in fly ash-based geopolymers. Mater Lett 57:1272–1280

    Article  Google Scholar 

  35. B.D. Adkins, B.H. Davis, Comparison of nitrogen adsorption and mercury penetration results I. Pore volume and surface area obtained for type IV isotherms, Adsorpt. Sci. Technol. 5 (1988) 76–93. https://doi.org/10.1177/026361748800500108

  36. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas / solid systems with special reference to the determination of surface area and porosity (recommendations 1984 ). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  37. Luna-Galiano Y, Fernández-Pereira C, Izquierdo M (2016) Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction , porosity and compressive strength. Mater Construcción 66:e098. https://doi.org/10.3989/mc.2016.10215

    Article  CAS  Google Scholar 

  38. Yao X, Zhang Z, Zhu H, Chen Y (2009) Geopolymerization process of alkali – metakaolinite characterized by isothermal calorimetry. Thermochim Acta 493:49–54. https://doi.org/10.1016/j.tca.2009.04.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Elimbi Antoine of the University of Yaoundé I (Cameroon) for providing clay samples.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

B. Sop-Tamo: study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript, L.N. Tchadjie: methodology, analysis and interpretation of data,writing - review & editing, J.B. Tarkwa: methodology, writing - review & editing, Thamer Alomayri: writing - review & editing, Hasan Assaedi: Writing - review & editing, J. P. Kamseu Mogo: writing - review & editing, J. Baenla: methodology, writing - review & editing, Kamgang-Youbi: writing - review & editing.

Corresponding author

Correspondence to L. N. Tchadjié.

Ethics declarations

This manuscript has not been published elsewhere in any form or language and has not been submitted to more than one journal for simultaneous consideration.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Declaration on Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

The gliding arc plasma treatment affects the geopolymeric reactivity of kaolin.

The gliding arc plasma-treated in spatial post-discharge mode is preferred to gliding arc plasma treatment in direct mode.

kaolin treated in spatial post-discharge mode gives the highest compressive strength.

Hydroxysodalite is the main crystalline phase after the geopolymerization process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sop-Tamo, B., Tchadjié, L.N., Tarkwa, J.B. et al. Effects of Non-thermal Plasma Treatment on the Geopolymerization of Kaolin Clay. Silicon 14, 3641–3652 (2022). https://doi.org/10.1007/s12633-021-01134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01134-z

Keywords

Navigation