Skip to main content

Advertisement

Log in

A Simplified Global Model to Describe the Oxidation of Acetylene Under Nanosecond Pulsed Discharges in a Complex Corona Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The objective of this paper is to analyse the oxidation of acetylene under nanosecond pulsed N2/O2 discharges generated in a complex multi-pin-to-plane (MPP) corona reactor in the frame of Yan’s generic chemical kinetic model. We made use of the results obtained from the detailed kinetic model published previously (Redolfi et al. in Plasma Chem Plasma Process 29(3):173–195, 2009) in order to propose a global reactor models based on Yan’s generic chemical model and taking into account the non-homogeneous and non-stationary character of the discharges. This enables us expressing the energy cost in terms of physical and kinetic parameters of the discharge. We checked the model validity by comparing predicted and measured energy cost-values for acetylene in MPP reactor. The methodology presented may be adapted to predict the energy cost in other complex corona reactor provided the model parameters are determined experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Redolfi M, Aggadi N, Duten X, Touchard S, Pasquiers S, Hassouni K (2009) Oxidation of acetylene in atmospheric pressure pulsed corona discharge cell working in the nanosecond regime. Plasma Chem Plasma Process 29(3):173–195. doi:10.1007/s11090-009-9169-z

    Article  CAS  Google Scholar 

  2. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54. doi:10.1016/j.jhazmat.2011.08.060

    Article  CAS  Google Scholar 

  3. Redolfi M, Makhloufi C, Ognier S, Cavadias S (2010) Oxidation of kerosene components in a soil matrix by a dielectric barrier discharge reactor. Process Saf Environ Prot 88(3):207–212. doi:10.1016/j.psep.2010.01.005

    Article  CAS  Google Scholar 

  4. Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher JR (2008) Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge. Plasma Chem Plasma Process 28(4):429–466. doi:10.1007/s11090-008-9135-1

    Article  CAS  Google Scholar 

  5. Klett C, Touchard S, Vega-Gonzalez A, Redolfi M, Bonnin X, Hassouni K, Duten X (2012) Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge. Plasma Sources Sci Technol 21(4). doi:10.1088/0963-0252/21/4/045001

  6. Hoeben W, Beckers F, Pemen AJM, van Heesch EJM, Kling WL (2012) Oxidative degradation of toluene and limonene in air by pulsed corona technology. J Phys D-Appl Phys 45(5). doi:10.1088/0022-3727/45/5/055202

  7. Satoh K, Matsuzawa T, Itoh H (2008) Decomposition of benzene in a corona discharge at atmospheric pressure. Thin Solid Films 516(13):4423–4429. doi:10.1016/j.tsf.2007.10.015

    Article  CAS  Google Scholar 

  8. Kim HH (2004) Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Polym 1(2):91–110. doi:10.1002/ppap.200400028

    Article  Google Scholar 

  9. Guaitella O, Thevenet F, Puzenat E, Guillard C, Rousseau A (2008) C2H2 oxidation by plasma/TiO2 combination: influence of the porosity, and photocatalytic mechanisms under plasma exposure. Appl Catal B-Environ 80(3–4):296–305. doi:10.1016/j.apcatb.2007.11.032

    Article  CAS  Google Scholar 

  10. Thevenet F, Guaitella O, Puzenat E, Herrmann JM, Rousseau A, Guillard C (2007) Oxidation of acetylene by photocatalysis coupled with dielectric barrier discharge. Catal Today 122(1–2):186–194. doi:10.1016/j.cattod.2007.01.057

    Article  CAS  Google Scholar 

  11. Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Combust Sci 26(4–6):565–608. doi:10.1016/s0360-1285(00)00009-5

    Article  CAS  Google Scholar 

  12. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, Second Edition. Wiley International Edition edn. Library of Congress Catalog, United State

  13. Yan K, van Heesch EJM, Pemen AJM, Huijbrechts P (2001) From chemical kinetics to streamer corona reactor and voltage pulse generator. Plasma Chem Plasma Process 21(1):107–137. doi:10.1023/a:1007045529652

    Article  CAS  Google Scholar 

  14. Rosocha LA, Korzekwa RA (1999) Advanced oxidation and reduction processes in the gas phase using non-thermal plasmas. J Adv Oxid Technol 4(3):247–264

    CAS  Google Scholar 

  15. Grisch F, Grandin GA, Messina D, Attal-Tretout B (2009) Laser-based measurements of gas-phase chemistry in non-equilibrium pulsed nanosecond discharges. CR Mec 337(6–7):504–516. doi:10.1016/j.crme.2009.06.021

    Article  CAS  Google Scholar 

  16. Iza F, Walsh JL, Kong MG (2009) From submicrosecond-to nanosecond-pulsed atmospheric-pressure plasmas. IEEE Trans Plasma Sci 37(7):1289–1296. doi:10.1109/tps.2009.2014766

    Article  Google Scholar 

  17. Gaedtke H, Glänzer K, Hippler H, Luther K, Troe J (1973) Addition reactions of oxygen atoms at high pressures. Symp Intern Combust 14(1):295–303. doi:10.1016/S0082-0784(73)80030-X

    Article  Google Scholar 

  18. Cvetanovic RJ (1987) Evaluated chemical kinetic data for the reactions of atomic oxygen O(P-3) with unsaturated-hydrocarbons. J Phys Chem Ref Data 16(2):261–326

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Redolfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redolfi, M., Touchard, S., Duten, X. et al. A Simplified Global Model to Describe the Oxidation of Acetylene Under Nanosecond Pulsed Discharges in a Complex Corona Reactor. Plasma Chem Plasma Process 34, 343–359 (2014). https://doi.org/10.1007/s11090-013-9512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9512-2

Keywords

Navigation