Skip to main content
Log in

Microstructure and Corrosion Resistance of NiCr-Based Coatings in Simulated Coal-Fired Boiler Conditions

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion behavior of NiCr-based coatings including 45CT, NiCrBSi, and Inconel 718 was studied under simulated coal-fired boiler conditions. It was found that these arc-sprayed coatings applied to TP347 boiler steel were comprised of Cr1.12Ni2.88 compound. Hot corrosion tests were performed to study the corrosion resistance of the coatings in simulated flue gases and synthetic fly ashes at 650 °C. The composition (wt.%) of synthetic ashes was 92.9fly ash–0.1NaCl–2.0Na2SO4–5.0CaSO4. The 45CT coating had optimal corrosion resistance while the NiCrBSi coating suffered from severe corrosion according to the experimental results. During corrosion tests, Cr2O3 and Ni3S2 were formed on the coating surfaces due to the oxidation and corrosion of the coatings. A protective Cr2O3 scale acted as a corrosion barrier, which led to the decrease in the corrosion rates. The Cr2O3 scale would lose protectiveness due to its dissolving caused by molten NaCl salt. The results indicated that compounds such as SiO2, CaO, and Al2O3 from the synthetic fly ashes were covered on the coating surfaces. Sulfur was found to be the most corrosive agent, substantially increasing corrosion rates. The mechanisms of S-induced corrosion and dissolving of Cr2O3 scale for NiCr-based coatings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. U. Syed, N. J. Simms, and J. E. Oakey, Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass. Fuel 101, 62–73 (2012).

    Article  CAS  Google Scholar 

  2. F. J. Frandsen, Utilizing biomass and waste for power production-a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products. Fuel 84, 1277–1294 (2005).

    Article  CAS  Google Scholar 

  3. J. Stringer and G. I. Wright, Current limitations of high temperature alloys in practical applications. Oxid. Met. 44, 265–308 (1995).

    Article  CAS  Google Scholar 

  4. W. Kępys, The impact of sulphate corrosion limitation in power boilers on the properties of ash from biomass combustion. Pol. J. Environ. Stud. 28, 1001–1006 (2019).

    Article  CAS  Google Scholar 

  5. N. Otsuka, Effects of fuel impurities on the fireside corrosion of boiler tubes in advanced power generating systems- a thermodynamic calculation of deposit chemistry. Corros. Sci. 44, 265–283 (2002).

    Article  CAS  Google Scholar 

  6. M. Aho, P. Yrjas, R. Taipale, M. Hupa, and J. Silvennoinen, Reduction of superheater corrosion by co-firing risky biomass with sewage sludge. Fuel 89, 2376–2386 (2010).

    Article  CAS  Google Scholar 

  7. H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, and L. L. Baxter, The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Prog. Energ. Combust. Sci. 26, 283–298 (2000).

    Article  CAS  Google Scholar 

  8. M. Spiegel, Salt melt induced corrosion of metallic materials in waste incineration plants. Mater. Corros. 50, 373–393 (1999).

    Article  CAS  Google Scholar 

  9. D. Lindberg, J. Niemi, M. Engblom, P. Yrjas, T. Lauren, and M. Hupa, Effect of temperature gradient on composition and morphology of synthetic chlorine-containing biomass boiler deposits. Fuel Process. Technol. 141, 285–298 (2016).

    Article  CAS  Google Scholar 

  10. J. Pettersson, J. E. Svensson, and L. G. Johansson, KCl-induced corrosion of a 304-type austenitic stainless steel in O2 and in O2 + H2O environment: the influence of temperature. Oxid. Met. 72, 159–177 (2009).

    Article  CAS  Google Scholar 

  11. N. Li, E. Vainio, L. Hupa, M. Hupa, and E. C. Zabetta, High-temperature corrosion of refractory materials in biomass and waste combustion: method development and tests with alumina, refractory exposed to a K2CO3-KCl mixture. Energ. Fuel. 31, 10046–10054 (2017).

    Article  CAS  Google Scholar 

  12. S. Retschitzegger, T. Gruber, T. Brunner, and I. Obernberger, Short term online corrosion measurements in biomass fired boilers. Part 1: Application of a newly developed mass loss probe. Fuel Process. Technol. 137, 148–156 (2015).

    Article  CAS  Google Scholar 

  13. C. Pettersson, J. Pettersson, H. Asteman, J. E. Svensson, and L. G. Johansson, KCl-induced high temperature corrosion of the austenitic Fe-Cr-Ni alloys 304L and Sanicro 28 at 600 °C. Corros. Sci. 48, 1368–1378 (2006).

    Article  CAS  Google Scholar 

  14. T. Jonsson, J. Froitzheim, J. Pettersson, J. E. Svensson, L. G. Johansson, and M. Halvarsson, The influence of KCl on the corrosion of an austenitic stainless steel (304L) in oxidizing humid conditions at 600 °C: a microstructural study. Oxid. Met. 72, 213–239 (2009).

    Article  CAS  Google Scholar 

  15. T. Blomberg, Which are the right test conditions for the simulation of high temperature alkali corrosion in biomass combustion. Mater. Corros. 57, 170–175 (2000).

    Article  CAS  Google Scholar 

  16. M. Becidan, L. Sorum, F. Frandsen, and A. J. Pedersen, Corrosion in waste-fired boilers: A thermodynamic study. Fuel 88, 595–604 (2009).

    Article  CAS  Google Scholar 

  17. L. Paul, G. Clark, A. Ossenberg-Engels, and T. Hansen, Alloy 33 weld overlay extends boiler tube life and saves money. Power Eng. 111, 64–69 (2007).

    Google Scholar 

  18. S. Paul and M. Harvey, Corrosion testing of Ni alloy HVOF coatings in high temperature environments for biomass applications. J. Therm. Spray Technol. 22, 316–327 (2013).

    Article  CAS  Google Scholar 

  19. M. Oksa, T. Varis, and K. Ruusuvuori, Performance testing of iron based thermally sprayed HVOF coatings in a biomass-fired fluidised bed boiler. Surf. Coat. Technol. 251, 191–200 (2014).

    Article  CAS  Google Scholar 

  20. L. Reddy, P. Shipway, C. Davis, and T. Hussain, HVOF and laser-cladded Fe-Cr-B coating in simulated biomass combustion: microstructure and fireside corrosion. Oxid. Met. 87, 825–835 (2017).

    Article  CAS  Google Scholar 

  21. T. Hussain, T. Dudziak, N. J. Simms, and J. R. Nicholls, Fireside corrosion behavior of HVOF and plasma-sprayed coatings in advanced coal/biomass co-fired power plants. J. Therm. Spray Technol. 22, 797–807 (2013).

    Article  CAS  Google Scholar 

  22. M. Oksa, P. Auerkari, J. Salonen, and T. Varis, Nickel-based HVOF coatings promoting high temperature corrosion resistance of biomass-fired power plant boilers. Fuel Process. Technol. 125, 236–245 (2014).

    Article  CAS  Google Scholar 

  23. V. P. S. Sidhu, K. Goyal, and R. Goyal, Comparative study of corrosion behavior of HVOF-coated boiler steel in actual boiler environment of a thermal power plant. J. Aust. Ceram. Soc. 53, 925–932 (2017).

    Article  CAS  Google Scholar 

  24. M. Oksa, S. Tuurna, and T. Varis, Increased lifetime for biomass and waste to energy power plant boilers with HVOF coatings: high temperature corrosion testing under chlorine-containing molten salt. J. Therm. Spray Technol. 22, 783–796 (2013).

    Article  CAS  Google Scholar 

  25. J. J. Tian, X. T. Luo, J. Wang, and C. J. Li, Mechanical performance of plasma-sprayed bulk-like NiCrMo coating with a novel shell-core-structured NiCr-Mo particle. Surf. Coat. Technol. 353, 179–189 (2018).

    Article  CAS  Google Scholar 

  26. Q. Y. Wang, S. L. Bai, Y. F. Zhang, and Z. D. Liu, Improvement of Ni-Cr-Mo coating performance by laser cladding combined re-melting. Appl. Surf. Sci. 308, 285–292 (2014).

    Article  CAS  Google Scholar 

  27. Q. Y. Wang, X. Z. Wang, H. Luo, and J. L. Luo, A study on corrosion behaviors of Ni-Cr-Mo laser coating, 316 stainless steel and X70 steel in simulated solutions with H2S and CO2. Surf. Coat. Technol. 291, 250–257 (2016).

    Article  CAS  Google Scholar 

  28. X. Z. Li, Z. D. Liu, H. C. Li, Y. T. Wang, and B. Li, Investigations on the behavior of laser cladding Ni-Cr-Mo alloy coating on TP347H stainless steel tube in HCl rich environment. Surf. Coat. Technol. 232, 627–639 (2013).

    Article  CAS  Google Scholar 

  29. J. K. Xiao, Y. Q. Wu, W. Zhang, J. Chen, X. L. Wei, and C. Zhang, Microstructure, wear and corrosion behaviors of plasma sprayed NiCrBSi-Zr coating. Surf. Coat. Technol. 360, 172–180 (2019).

    Article  CAS  Google Scholar 

  30. T. S. Sidhu, S. Prakash, and R. D. Agrawal, Hot corrosion studies of HVOF NiCrBSi and Stellite-6 coatings on a Ni-based superalloy in an actual industrial environment of a coal fired boiler. Surf. Coat. Technol. 201, 1602–1612 (2006).

    Article  CAS  Google Scholar 

  31. D. Fantozzi, V. Matikainen, M. Uusitalo, H. Koivuluoto, and P. Vuoristo, Chlorine-induced high temperature corrosion of Inconel 625 sprayed coatings deposited with different thermal spray techniques. Surf. Coat. Technol. 318, 233–243 (2017).

    Article  CAS  Google Scholar 

  32. E. Qin, Q. Huang, Y. Shao, G. Chen, L. Ye, Q. Gu, and S. Wu, The characterization of twin-wire arc-sprayed FeCrBSi coating and the application in sewage sludge boilers. J. Therm. Spray Technol. 23, 1493–1498 (2014).

    Article  Google Scholar 

  33. P. Niranatlumpong and H. Koiprasert, Phase transformation of NiCrBSi-WC and NiBSi-WC arc sprayed coatings. Surf. Coat. Technol. 206, 440–445 (2011).

    Article  CAS  Google Scholar 

  34. K. Szymanski, A. Hernas, G. Moskal, and H. Myalska, Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers - A review. Surf. Coat. Technol. 268, 153–164 (2015).

    Article  CAS  Google Scholar 

  35. V. Pokhmurskii, M. Student, V. Gvozdeckii, T. Stypnutskyy, O. Student, B. Wielage, and H. Pokhmurska, Arc-sprayed iron-based coatings for erosion-corrosion protection of boiler tubes at elevated temperatures. J. Therm. Spray Technol. 22, 808–819 (2013).

    Article  CAS  Google Scholar 

  36. E. W. Qin, S. Yin, H. Ji, Q. Huang, Z. K. Liu, and S. H. Wu, Hot corrosion behavior of arc-sprayed highly dense NiCr-based coatings in chloride salt deposit. J. Therm. Spray Technol. 26, 787–797 (2017).

    Article  CAS  Google Scholar 

  37. M. Oksa, J. Metsajoki, and J. Karki, Thermal spray coatings for high-temperature corrosion protection in biomass co-fired boilers. J. Therm. Spray Technol. 24, 194–205 (2015).

    CAS  Google Scholar 

  38. E. Sadeghimeresht, L. Reddy, T. Hussain, M. Huhtakangas, N. Markocsan, and S. Joshi, Influence of KCl and HCl on high temperature corrosion of HVAF-sprayed NiCrAlY and NiCrMo coatings. Mater. Des. 148, 17–29 (2018).

    Article  CAS  Google Scholar 

  39. P. K. Koech and C. J. Wang, High-temperature corrosion behaviour of aluminized-coated and uncoated alloy 718 under cyclic oxidation and corrosion in NaCl vapour at 750 °C. Oxid. Met. 90, 713–735 (2018).

    Article  CAS  Google Scholar 

  40. T. Hussain, N. J. Simms, and J. R. Nicholls, Modelling fireside corrosion of thermal sprayed coatings in co-firing of coal/biomass. Mater. Corros. 65, 197–205 (2014).

    Article  CAS  Google Scholar 

  41. I. G. Wright and S. C. Kung, Possible scenarios for the causes of accelerated fireside corrosion of superheater tubes in coalfired boilers. Mater. High Temp. 35, 316–326 (2018).

    Article  CAS  Google Scholar 

  42. B. S. Sidhu and S. Prakash, Nickel-chromium plasma spray coatings: a way to enhance degradation resistance of boiler tube steels in boiler environment. J. Therm. Spray Technol. 15, 131–140 (2006).

    Article  CAS  Google Scholar 

  43. Y. N. Wu, A. Yamaguchi1, H. Murakami1, and S. Kuroda, Role of Iridium in hot corrosion resistance of Pt-Ir modified aluminide coatings with Na2SO4-NaCl salt at 1173K. Mater. Trans. 47, 1918–1921 (2006).

    Article  CAS  Google Scholar 

  44. S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, Hot corrosion behavior of detonation gun sprayed Cr3C2-NiCr coatings on Ni and Fe-based superalloys in Na2SO4-60%V2O5 environment at 900 °C. J. Alloy. Compd. 463, 358–372 (2008).

    Article  CAS  Google Scholar 

  45. S. S. Chatha, H. S. Sidhu, and B. S. Sidhu, High-temperature behavior of a NiCr-coated T91 boiler steel in the platen superheater of coal-fired boiler. J. Therm. Spray Technol. 22, 838–847 (2013).

    Article  CAS  Google Scholar 

  46. S. B. Mishra and S. Prakash, Erosion-corrosion behavior of Ni-20Cr plasma coating in actual boiler environment. Surf. Eng. 31, 29–38 (2015).

    Article  CAS  Google Scholar 

  47. M. Oksa, J. Metsajoki, and J. Karki, Corrosion testing of thermal spray coatings in a biomass co-firing power plant. Coatings 6, 1–13 (2016).

    Article  Google Scholar 

  48. S. Kamala, K. V. Sharma, R. Jayaganthan, and S. Prakash, Hot corrosion behavior of thermal spray coatings on superalloy in coal-fired boiler environment. J. Mater. Res. 30, 2829–2843 (2015).

    Article  CAS  Google Scholar 

  49. B. Thiyagarajan and V. Senthilkumar, Experimental studies on fly-ash erosion behavior of Ni-Cr based nanostructured thermal spray coating in boiler tubes. Mater. Manuf. Process 32, 1209–1217 (2017).

    Article  CAS  Google Scholar 

  50. J. Adamiec, High temperature corrosion of power boiler components cladded with nickel alloys. Mater. Charact. 60, 1093–1099 (2009).

    Article  CAS  Google Scholar 

  51. M. P. Brady, J. R. Keiser, D. N. Leonard, L. Whitmer, and J. K. Thomson, Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production. J. Min. Met. Mater. Soc. 66, 2583–2592 (2014).

    Article  CAS  Google Scholar 

  52. V. Mannava, A. S. Rao, N. Paulose, M. Kamaraj, and R. S. Kottada, Hot corrosion studies on Ni-base superalloy at 650 °C under marine-like environment conditions using three salt mixture(Na2SO4 + NaCl + NaVO3). Corros. Sci. 105, 109–119 (2016).

    Article  CAS  Google Scholar 

  53. M. H. Li, X. F. Sun, W. Y. Hu, H. G. Guan, and S. G. Chen, Hot corrosion of a single crystal Ni-Base superalloy by Na-Salts at 900 °C. Oxid. Met. 65, 137–150 (2006).

    Article  CAS  Google Scholar 

  54. S. L. Li, X. G. Yang, H. Y. Qi, J. N. Song, and D. Q. Shi, Low-temperature hot corrosion effects on the low-cycle fatigue lifetime and cracking behaviors of a powder metallurgy Ni-based superalloy. Int. J. Fatigue 116, 334–343 (2018).

    Article  CAS  Google Scholar 

  55. N. Bala, H. Singh, S. Prakash, and J. Karthikeyan, Investigations on the behavior of HVOF and cold sprayed Ni-20Cr coating on T22 boiler steel in actual boiler environment. J. Therm. Spray Technol. 21, 144–158 (2012).

    Article  CAS  Google Scholar 

  56. N. Bala, H. Singh, and S. Prakash, High-temperature oxidation studies of cold-sprayed Ni-20Cr and Ni-50Cr coatings on SAE 213-T22 boiler steel. Appl. Surf. Sci. 255, 6862–6869 (2009).

    Article  CAS  Google Scholar 

  57. M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mantyla, High temperature corrosion of coatings and boiler steels in reducing chlorine-containing atmosphere. Surf. Coat. Technol. 161, 275–285 (2002).

    Article  CAS  Google Scholar 

  58. P. Castello, V. Guttmann, N. Farr, and G. Smith, Laboratory-simulated fuel-ash corrosion of superheater tubes in coal-fired ultrasupercritical-boilers. Mater. Corros. 51, 786–790 (2000).

    Article  CAS  Google Scholar 

  59. S. B. Mishra, K. Chandra, and S. Prakash, Erosion-corrosion behaviour of Nickel and Iron based superalloys in boiler environment. Oxid. Met. 83, 101–117 (2015).

    Article  CAS  Google Scholar 

  60. L. Zheng, M. C. Zhang, and J. X. Dong, Hot corrosion behavior of powder metallurgy Rene 95 nickel-based superalloy in molten NaCl-Na2SO4 salts. Mater. Des. 32, 1981–1989 (2011).

    Article  CAS  Google Scholar 

  61. R. A. Mahesh, R. Jayaganthan, and S. Prakash, Evaluation of hot corrosion behavior of HVOF sprayed NiCrAl coating on superalloys at 900 °C. Mater. Chem. Phys. 111, 524–533 (2008).

    Article  CAS  Google Scholar 

  62. S. S. Chatha, H. S. Sidhu, and B. S. Sidhu, High temperature hot corrosion behavior of NiCr and Cr3C2-NiCr coatings on T91 boiler steel in an aggressive environment at 750 °C. Surf. Coat. Technol. 206, 3839–3850 (2012).

    Article  CAS  Google Scholar 

  63. R. A. Antunes and M. C. L. de Oliveira, Corrosion in biomass combustion: A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies. Corros. Sci. 76, 6–26 (2013).

    Article  CAS  Google Scholar 

  64. N. Israelsson, K. Hellstrom, J. E. Svensson, and L. G. Johansson, KCl-induced corrosion of the FeCrAl alloy Kanthal® AF at 600 °C and the effect of H2O. Oxid. Met. 83, 1–27 (2015).

    Article  CAS  Google Scholar 

  65. J. Barroso, F. Barreras, and J. Ballester, Behavior of a high-capacity steam boiler using heavy fuel oil Part I. High-temperature corrosion. Fuel Process. Technol. 86, 89–105 (2004).

    Article  CAS  Google Scholar 

  66. M. Blaszczyszyn, R. Blaszczyszyn, R. Meclewski, A. J. Melmed, and T. E. Madey, Interactions of sulfur with nickel surfaces: adsorption, diffusion and desorption. Surf. Sci. 131, 433–477 (1983).

    Article  CAS  Google Scholar 

  67. G. Luckman and R. S. Polizzotti, An effect of chemisorbing surface reactions poisons on the transition from internal to external oxidation. Metall. Mater. Trans. A 16, 133–136 (1985).

    Article  Google Scholar 

  68. D. L. Wu, K. V. Dahl, T. L. Christiansen, M. Montgomery, and J. Hald, Corrosion behavior of Ni and nickel aluminide coatings exposed in a biomass fired power plant for two years. Surf. Coat. Technol. 362, 355–365 (2019).

    Article  CAS  Google Scholar 

  69. G. M. Liu, F. Yu, J. H. Tian, and J. H. Ma, Influence of pre-oxidation on the hot corrosion of M38G superalloy in the mixture of Na2SO4-NaCl melts. Mater. Sci. Eng. A 496, 40–44 (2008).

    Article  CAS  Google Scholar 

  70. E. Z. Liu, Z. Zheng, X. R. Guan, J. Tong, L. K. Ning, and Y. S. Yu, Influence of pre-oxidation on the hot corrosion of DZ68 superalloy in the mixture of Na2SO4-NaCl. J. Mater. Sci. Technol. 26, 895–899 (2010).

    Article  CAS  Google Scholar 

  71. A. K. Roslik, V. N. Konev, and A. M. Maltsev, Some aspects of the mechanism of high temperature oxidation of nickel in SO2. Oxid. Met. 43, 59–82 (1995).

    Article  CAS  Google Scholar 

  72. X. H. Zhao, Y. Han, Z. Q. Bai, and B. Wei, The experiment research of corrosion behaviour about Ni-based alloys in simulant solution containing H2S/CO2. Electrochimi. Acta 56, 7725–7731 (2011).

    Article  CAS  Google Scholar 

  73. C. Zhang, X. Peng, Z. J. Zhao, and F. Wang, Hot Corrosion of an electrodeposited Ni-11 wt.% Cr nanocomposite under molten Na2SO4-K2SO4-NaCl. J. Electrochem. Soc. 152, 321–326 (2005).

    Article  CAS  Google Scholar 

  74. W. J. Li, Y. Liu, Y. Wang, C. Han, and H. P. Tang, Hot corrosion behavior of Ni-16Cr-xAl based alloys in mixture of Na2SO4-NaCl at 600 °C. Trans. Nonferrous. Met. Soc. China 21, 2617–2625 (2011).

    Article  CAS  Google Scholar 

  75. S. Q. Zhao, X. S. Xie, G. D. Smith, and S. J. Patel, The corrosion of INCONEL alloy 740 in simulated environments for pulverized coal-fired boiler. Mater. Chem. Phys. 90, 275–281 (2005).

    Article  CAS  Google Scholar 

  76. X. Montero and M. C. Galetz, Vanadium-containing oil ash corrosion of boilers under oxidizing and syngas atmospheres. Oxid. Met. 83, 485–506 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Electric Group Co., Ltd., (SEC) under Grants SE14-J45 and SE18-714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Li, Y. & Wang, Y.F. Microstructure and Corrosion Resistance of NiCr-Based Coatings in Simulated Coal-Fired Boiler Conditions. Oxid Met 95, 45–63 (2021). https://doi.org/10.1007/s11085-020-10016-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10016-5

Keywords

Navigation