Skip to main content
Log in

High-Temperature Corrosion Behaviour of Aluminized-Coated and Uncoated Alloy 718 Under Cyclic Oxidation and Corrosion in NaCl Vapour at 750 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Corrosion behaviour of hot-dip aluminized-coated and uncoated Alloy 718 was examined in dry air and with NaCl salt. Tests were done at 750 °C for 10 h and cooled to room temperature for 30 min per thermal cycle. An oxide layer of Cr2O3 formed on the surface of uncoated material oxidized in air without NaCl. Some Fe and Ni were also detected on the surface. However, porous oxide scale of Fe2O3 formed on the surface of uncoated substrate exposed to thermal cycle in NaCl with extensive corrosion attack and scale spallation. Oxide of Fe2O3 formed on top of Cr2O3 oxide layer due to high volatilization of iron chloride compared to chromium chloride. The hot-dip coating highly protected and improved oxidation resistance of the Alloy 718. Nevertheless, scale spallation and formation of voids in the aluminium layer increased with thermal cycle. The coating also improved corrosion resistance of the alloy exposed to NaCl. However, degradation of the aluminized layer due to formation of cracks and voids allowed NaCl to diffuse into the substrate causing extensive corrosion. Existence of voids in the coating is attributed to outward diffusion of aluminium to form oxide scale, inward diffusion for NiAl layer formation, and oxychloridation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. R. Davis, ASM Specialty Handbook, Nickel, Cobalt and Their Alloys, (ASM International, Materials Park, 2000).

    Google Scholar 

  2. S. Kamal and C. V. Kumar, International Journal of Surface Engineering and Materials Technology 2, 2012 (16).

    Article  Google Scholar 

  3. G. A. El-Awadi, S. Abdel-Samad, and E. S. Elshazly, Applied Surface Science 378, 2016 (224). https://doi.org/10.1016/j.apsusc.2016.03.181.

    Article  CAS  Google Scholar 

  4. G. S. Mahobia, N. Paulose, and V. Singh, Journal of Materials Engineering and Performance 22, 2013 (2418). https://doi.org/10.1007/s11665-013-0532.

    Article  CAS  Google Scholar 

  5. Z.-N. Bi, J.-X. Dong, M.-C. Zhang, L. Zheng, and X.-S. Xie, International Journal of Minerals, Metallurgy, and Materials 17, 2010 (312). https://doi.org/10.1007/s12613-010-0310-z.

    Article  CAS  Google Scholar 

  6. C. J. Wang and S. M. Chen, Surface and Coatings Technology 201, 2006 (3862). https://doi.org/10.1016/j.surfcoat.2006.07.242.

    Article  CAS  Google Scholar 

  7. L. Geng, Y. S. Na, and N. K. Park, Materials and Design 28, 2007 (978). https://doi.org/10.1016/j.matdes.2005.11.020.

    Article  CAS  Google Scholar 

  8. S. Saladi, J. Menghani, and S. Prakash, Journal of Materials Engineering and Performance 23, 2014 (4394). https://doi.org/10.1007/s11665-014-1240-0.

    Article  CAS  Google Scholar 

  9. K. A. Al-hatab, M. A. Al-bukhaiti, U. Krupp, and M. Kantehm, Oxidation of Metals 75, 2011 (209). https://doi.org/10.1007/s11085-010-9230-6.

    Article  CAS  Google Scholar 

  10. C. T. Liu, J. Ma, X. F. Sun, and P. C. Zhao, Surface and Coatings Technology 204, 2010 (3641).

    Article  CAS  Google Scholar 

  11. D. Mudgal, S. Singh, and S. Prakash, Metallography, Microstructure, and Analysis 4, 2015 (13).

    Article  CAS  Google Scholar 

  12. S. Saladi, J. Menghani, and S. Prakash, Transactions of the Indian Institute of Metals 67, 2014 (623). https://doi.org/10.1007/s12666-014-0383-x.

    Article  CAS  Google Scholar 

  13. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 1995 (113). https://doi.org/10.1007/Bf01046725.

    Article  CAS  Google Scholar 

  14. C. J. Wang and Y. C. Chang, Materials Chemistry and Physics 76, 2002 (151). https://doi.org/10.1016/S0254-0584(01)00515-6.

    Article  CAS  Google Scholar 

  15. P. Visuttipitukul, N. Limvanutpong, and P. Wangyao, Materials Transactions 51, 2010 (982). https://doi.org/10.2320/matertrans.M2009382.

    Article  CAS  Google Scholar 

  16. G. W. Goward and D. H. Boone, Oxidation of Metals 3, 1971 (475). https://doi.org/10.1007/bf00604047.

    Article  CAS  Google Scholar 

  17. M. Zielinska, J. Sieniawski, M. Yavorska, and M. Motyka, Archives of Metallurgy and Materials 56, 2011 (193). https://doi.org/10.2478/v10172-011-0023-y.

    Article  CAS  Google Scholar 

  18. A. Magdziarz and Z. Kalicka, Corrosion Science 49, 2007 (1869). https://doi.org/10.1016/j.corsci.2006.10.010.

    Article  CAS  Google Scholar 

  19. W. H. Lee, Materials Chemistry and Physics 76, 2002 (26). https://doi.org/10.1016/S0254-0584(01)00497-7.

    Article  CAS  Google Scholar 

  20. S. C. Choi, H. J. Cho, and Y. J. Kim, Oxidation of Metals 46, 1996 (51).

    Article  CAS  Google Scholar 

  21. W. H. Lee and R. Y. Lin, Materials Chemistry and Physics 77, 2003 (86). https://doi.org/10.1016/s0254-0584(01)00567-3.

    Article  CAS  Google Scholar 

  22. ASM-International, ASM Handbook: Volume 3: Alloy Phase Diagrams, Vol. 3, 10 edn. (ASM International, Materials Park, Ohio, 1992).

  23. S. Y. Jiang and S. C. Li, Rare Metals 30, 2011 (486). https://doi.org/10.1007/s12598-011-0330-5.

    Article  CAS  Google Scholar 

  24. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1971 (1782).

    Article  CAS  Google Scholar 

  25. F. S. Pettit and G. H. Meier, in The Metallurgical Society of AIME, ed. M. Gell et al. (1984), pp. 651–687.

  26. Y. Xie, J. Zhang, and D. J. Young, Journal of the Electrochemical Society 164, 2017 (C285). https://doi.org/10.1149/2.1021706jes.

    Article  CAS  Google Scholar 

  27. D. L. Douglass, Corrosion Science 8, 1968 (665). https://doi.org/10.1016/s0010-938x(68)80101-5.

    Article  CAS  Google Scholar 

  28. J. H. Chen, P. M. Rogers, and J. A. Little, Oxidation of Metals 47, 1997 (381). https://doi.org/10.1007/BF02134783.

    Article  CAS  Google Scholar 

  29. T. S. Sidhu, A. Malik, S. Prakash, and R. D. Agrawal, International Journal of Physical Sciences 1, 2006 (27).

    Google Scholar 

  30. N. Birks, G. H. Meier, and F. S. Pettit, Journal of Metals 39, 1987 (28).

    CAS  Google Scholar 

  31. S. Kamal, K. V. Sharma, and A. M. Abdul-Rani, Journal of Minerals and Materials Characterization and Engineering 03, 2015 (26). https://doi.org/10.4236/jmmce.2015.31004.

    Article  CAS  Google Scholar 

  32. Y. Shinata and Y. Nishi, Oxidation of Metals 26, 1986 (201). https://doi.org/10.1007/bf00659184.

    Article  CAS  Google Scholar 

  33. H. Fujikawa and N. Maruyama, Materials Science and Engineering: A 120–121, 1989 (301). https://doi.org/10.1016/0921-5093(89)90754-5.

    Article  Google Scholar 

  34. Y. Shinata, M. Hara, and T. Nakagawa, Materials Transactions, JIM 32, 1991 (969). https://doi.org/10.2320/matertrans1989.32.969.

    Article  CAS  Google Scholar 

  35. C. J. Wang and C. C. Li, Oxidation of Metals 61, 2004 (485). https://doi.org/10.1023/B:OXID.0000032335.40917.4f.

    Article  CAS  Google Scholar 

  36. H. P. Nielsen, F. J. Frandsen, K. Dam-Johansen, and L. L. Baxter, Progress in Energy and Combustion Science 26, 2000 (283). https://doi.org/10.1016/S0360-1285(00)00003-4.

    Article  CAS  Google Scholar 

  37. Y. S. Li, M. Spiegel, and S. Shimada, Materials Chemistry and Physics 93, 2005 (217). https://doi.org/10.1016/j.matchemphys.2005.03.015.

    Article  CAS  Google Scholar 

  38. G. Y. Lai, High Temperature Corrosion and Materials Applications, (ASM International, Materials Park, 2007).

    Google Scholar 

  39. M. Badaruddin and C. J. Wang, Advanced Materials Research 79–82, 2009 (1775). https://doi.org/10.4028/www.scientific.net/AMR.79-82.1775.

    Article  CAS  Google Scholar 

  40. C. J. Wang and M. Badaruddin, Surface and Coatings Technology 205, 2010 (1200). https://doi.org/10.1016/j.surfcoat.2010.08.153.

    Article  CAS  Google Scholar 

  41. F. H. Stott, Reports on Progress in Physics 50, 1987 (861).

    Article  CAS  Google Scholar 

  42. M. D. Thouless, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films 9, 1991 (2510). https://doi.org/10.1116/1.577265.

    Article  CAS  Google Scholar 

  43. C. C. Tsaur, J. C. Rock, and Y. Y. Chang, Materials Chemistry and Physics 91, 2005 (330). https://doi.org/10.1016/j.matchemphys.2004.11.035.

    Article  CAS  Google Scholar 

  44. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 1982 (245).

    Article  CAS  Google Scholar 

  45. M. Haerig and S. Hofmann, Applied Surface Science 125, 1998 (99). https://doi.org/10.1016/s0169-4332(97)00403-0.

    Article  CAS  Google Scholar 

  46. J. Zygmuntowicz, P. Wiecińska, A. Miazga, and K. Konopka, Journal of Thermal Analysis and Calorimetry 125, 2016 (1079). https://doi.org/10.1007/s10973-016-5357-2.

    Article  CAS  Google Scholar 

  47. D. W. Susnitzky, S. R. Summerfelt, and C. B. Carter, Scripta Metallurgica 22, 1988 (1149). https://doi.org/10.1016/s0036-9748(88)80121-2.

    Article  CAS  Google Scholar 

  48. C. G. Anchieta, et al., Cerâmica 61, 2015 (477). https://doi.org/10.1590/0366-69132015613601925.

    Article  Google Scholar 

  49. M. K. Hossain and S. R. J. Saunders, Oxidation of Metals 12, 1978 (1).

    Article  CAS  Google Scholar 

  50. N. Hiramatsu, Y. Uematsu, T. Tanaka, and M. Kinugasa, Materials Science and Engineering: A 120, 1989 (319). https://doi.org/10.1016/0921-5093(89)90757-0.

    Article  Google Scholar 

  51. C. J. Wang and Y. C. Chang, Oxidation of Metals 57, 2002 (363). https://doi.org/10.1023/A:1014834620707.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Science Council, Taiwan, under Grant No. NSC MOST105-2623-E-011-003-D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pius Kibet Koech.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koech, P.K., Wang, C.J. High-Temperature Corrosion Behaviour of Aluminized-Coated and Uncoated Alloy 718 Under Cyclic Oxidation and Corrosion in NaCl Vapour at 750 °C. Oxid Met 90, 713–735 (2018). https://doi.org/10.1007/s11085-018-9865-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9865-2

Keywords

Navigation