Skip to main content
Log in

Oxidation Behavior of Selected Bond Coats Based on the γ′ + γ Structure and Their Performance in Thermal Barrier Coatings Deposited on a Nickel-Based Superalloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Three bond coats based on the γ′-Ni3Al + γ-Ni microstructure were developed by diffusing pairs of Pt layers and metallic layers with selected compositions into a Ni-based superalloy. Thermal exposure tests at 1,150 °C with 24-h cycling period to room temperature were used to evaluate the thermal stability and oxidation behavior of the bond coats as well as their performance in thermal barrier coating systems utilizing zirconia-7 wt% yttria as the top coat. It is shown that a bond coat developed by a Pt layer and a layer of Ni-6 wt% Re-0.5 wt% Y alloy outperforms the conventional γ′ + γ Pt bond coats by more than two folds. Most evidence points out that the proper concentrations of Re and Y in the presence of balanced concentrations of other elements, particularly Al, Ti, Cr and Co can significantly enhance the thermal stability and oxidation resistance of γ′ + γ Pt bond coats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. D. R. Clarke, M. Oechnser and N. P. Padture, MRS Bulletin 37, 891 (2012).

    Article  Google Scholar 

  2. B. Gleeson, Journal of Propulsion and Power 22, 375 (2006).

    Article  Google Scholar 

  3. M. J. Pomeroy, Materials and Design 26, 223 (2005).

    Article  Google Scholar 

  4. J. R. Nicholls, MRS Bulletin 28, 659 (2003).

    Article  Google Scholar 

  5. P. Padture, M. Gell and E. H. Jordan, Science 296, 280 (2002).

    Article  Google Scholar 

  6. H. Lammermann and G. Kienel, Advanced Materials and Processes 140, 18 (1991).

    Google Scholar 

  7. K. Das, Progress in Materials Science 58, 151 (2013).

    Article  Google Scholar 

  8. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Petit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  9. X. Chen, J. W. Hutchinson, M. Y. He and A. G. Evans, Acta Materialia 51, 2017 (2003).

    Article  Google Scholar 

  10. X. Zhou, Z. H. Xu, R. D. Mu, L. M. He, G. H. Huang and X. Q. Cao, Journal of Alloys and Compounds 41, 591 (2014).

    Google Scholar 

  11. H. M. Tawancy, Oxidation of Metals 81, 237 (2014).

    Article  Google Scholar 

  12. H. M. Tawancy, Materials at High Temperatures 31, 76 (2014).

    Article  Google Scholar 

  13. H. M. Tawancy and L. M. Al-Hadhrami, Journal of Engineering for Gas Turbines and Power-Transactions of ASME, 134, article number 012101 (2012).

  14. E. Evans, Surface and Coatings Technology 206, 1512 (2011).

    Article  Google Scholar 

  15. P. Y. Thery, M. Poulain, M. Dupeux and M. Braccini, Journal of Materials Science 44, 1776 (2009).

    Article  Google Scholar 

  16. D. Naumenko, V. Shemet, L. Singheiser and W. L. Quadakkers, Journal of Materials Science 44, 1687 (2009).

    Article  Google Scholar 

  17. M. Martena, D. Botto, P. Fino, S. Sabbadini, M. M. Gola and C. Badini, Engineering Failure Analysis 13, 409 (2006).

    Article  Google Scholar 

  18. N. M. Yanar, F. S. Pettit and G. H. Meier, Metallurgical and Materials Transactions A 37, 1563 (2006).

    Article  Google Scholar 

  19. I. Spitsberg and K. More, Materials Science and Engineering A 417, 322 (2006).

    Article  Google Scholar 

  20. T. Xu, S. Faulhaber, C. Mercer, M. Maloney and A. G. Evans, Acta Materialia 52, 1439 (2004).

    Article  Google Scholar 

  21. J. H. Sun, E. Chang, C. H. Chao and M. J. Cheng, Oxidation of Metals 40, 465 (1993).

    Article  Google Scholar 

  22. S. M. Meier, D. M. Nissley, K. D. Scheffler and T. A. Cruse, Journal of Engineering for Gas Turbines and Power-Transactions of ASME 114, 258 (1992).

    Article  Google Scholar 

  23. W. Lih, E. Chang, B. C. Wu and C. H. Chao, Oxidation of Metals 36, 221 (1991).

    Article  Google Scholar 

  24. B. C. Wu, C. H. Chao and E. Chang, Materials Science and Engineering A 124, 215 (1990).

    Article  Google Scholar 

  25. B. C. Wu, E. Chang, C. H. Chao and M. L. Tasi, Journal of Materials Science 25, 1112 (1990).

    Article  Google Scholar 

  26. R. A. Miller, Journal of Engineering for Gas Turbines and Power-Transactions of ASME 111, 301 (1989).

    Article  Google Scholar 

  27. M. Seraffon, N. J. Sumner, J. Summer and J. R. Nicholls, Surface and Coatings Technology 206, 1529 (2011).

    Article  Google Scholar 

  28. P. Audigie, S. Selezneff, A. Rouaix-Vade Put, C. Estournes, S. Hamadi and D. Monceau, Oxidation of Metals 81, 33 (2014).

    Article  Google Scholar 

  29. S. Hayashi and B. Gleeson, Oxidation of Metals 77, 237 (2012).

    Article  Google Scholar 

  30. V. Deodeshmukh and B. Gleeson, Oxidation of Metals 76, 43 (2011).

    Article  Google Scholar 

  31. L. Chirivi and J. R. Nicholls, Oxidation of Metals 81, 17 (2011).

    Article  Google Scholar 

  32. R. T. Wu, K. Kawagishi, H. Harada and R. C. Reed, Acta Materialia 56, 3622 (2008).

    Article  Google Scholar 

  33. S. Selezneff, M. Boidot, J. Hugot, D. Oquab, C. Estournes and D. Monceau, Surface and Coatings Technology 206, 1558 (2011).

    Article  Google Scholar 

  34. H. M. Tawancy and L. M. Al-Hadhrami, Journal of Engineering for Gas Turbines and Power-Transactions of ASME, 133, article number 042101 (2011).

  35. N. Mu, T. Izumi, L. Zhang and B. Gleeson, in Superalloys, eds. R. C. Reed, et al. (The Minerals, Metals and Materials Society, Warrendale, 2008), p. 629.

    Google Scholar 

  36. J. P. Stacy, Y. Zhang, B. A. Pint, J. A. Haynes, B. T. Hazel and B. A. Nagaraj, Surface and Coatings Technology 202, 632 (2007).

    Article  Google Scholar 

  37. T. Izumi, N. Mu, L. Zhang and B. Gleeson, Surface and Coatings Technology 202, 628 (2007).

    Article  Google Scholar 

  38. Y. Zhang, D. A. Ballard, J. P. Stacy, B. A. Pint and J. A. Haynes, Surface and Coatings Technology 201, 3857 (2006).

    Article  Google Scholar 

  39. S. Hayashi, W. Wang, D. J. Sordelet and B. Gleeson, Metallurgical and Materials Transactions A 36A, 1669 (2005).

    Google Scholar 

  40. H. M. Tawancy and L. M. Al-Hadhrami, Journal of Engineering for Gas Turbines and Power-Transactions of ASME, 132, article number 022103 (2010).

  41. H. M. Tawancy, M. O. Aboelfotoh and N. M. Abbas, Journal of Materials Science 43, 2978 (2008).

    Article  Google Scholar 

  42. H. M. Tawancy, N. M. Abbas and T. N. Rhys-Jones, Surface Coatings and Technology 49, 1 (1991).

    Article  Google Scholar 

  43. J. Schaeffer, G. Kim, G. H. Meier and F. S. Pettit, in The Role of Active Elements in the High Temperature Oxidation Behavior of Metals and Alloys, ed. E. Lang (Elsevier Applied Science, New York, 1989), p. 231.

    Chapter  Google Scholar 

  44. M. R. Jackson and J. R. Rairden, Metallurgical Transactions A 8A, 1697 (1977).

    Article  Google Scholar 

  45. Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, B. A. Pint, K. M. Cooley and P. K. Liaw, Metallurgical and Materials Transactions A 32A, 1727 (2001).

    Article  Google Scholar 

  46. B. Gleeson, N. Mu and S. Hayashi, Journal of Materials Science 44, 1704 (2009).

    Article  Google Scholar 

  47. M. A. Phillips and B. Gleeson, Oxidation of Metals 50, 399 (1998).

    Article  Google Scholar 

  48. H. Lan, P. Y. Hou, Z. G. Yang, Y. D. Zhang and C. Zhang, Oxidation of Metals 75, 77 (2011).

    Article  Google Scholar 

  49. W. Beele, N. Czech, W. J. Quadadakkers and W. Stamm, Surface and Coatings Technology 94/95, 41 (1997).

    Article  Google Scholar 

  50. N. Czech, F. Schmitz and W. Stamm, Surface and Coatings Technology 76/77, 28 (1995).

    Article  Google Scholar 

  51. N. Czech, F. Schmitz and W. Stamm, Surface and Coatings Technology 68/69, 17 (1994).

    Article  Google Scholar 

  52. J. J. Liang, H. Wei, Y. L. Zhu, X. F. Sun, T. Jin, Z. Q. Hu, M. S. Dargusch and X. Yab, Surface and Coatings Technology 205, 4968 (2011).

    Article  Google Scholar 

  53. J. Jedlinski, Solid State Phenomena 21/22, 335 (1992).

    Article  Google Scholar 

  54. A. M. Huntz, in Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, ed. E. Lang (Elsevier Applied Science, London, 1989), p. 81.

    Chapter  Google Scholar 

  55. B. H. Kear, in Order-Disorder Transformations in Alloys, ed. H. Warlimont (Springer, Berlin, 1974), p. 440.

    Chapter  Google Scholar 

  56. E. W. Ross and C. T. Sims, in Superalloys II, eds. C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987), p. 97.

    Google Scholar 

  57. R. G. Davies and T. L. Johnston, in Ordered Alloys: Structural Applications and Physical Properties, eds. B. H. Kear, C. T. Sims, N. S. Stoloff and J. W. Westbrook (Claitor’s Publishing Division, Baton Rouge, 1970), p. 447.

    Google Scholar 

  58. D. S. Rickerby and R. B. Newbery, Vacuum 38, 161 (1988).

    Article  Google Scholar 

  59. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage and N. Hitchman, Journal of Thermal Spray Technology 17, 199 (2008).

    Article  Google Scholar 

  60. V. K. Tolpygo, Surface and Coatings Technology 202, 617 (2007).

    Article  Google Scholar 

  61. D. Li, H. Guo, H. Peng, S. Gong and H. Xu, Applied Surface Science 283, 513 (2013).

    Article  Google Scholar 

  62. V. K. Tolpygo and D. R. Clarke, in Elevated Temperature Coatings: Science and Technology IV, eds. N. B. Dahotre, J. M. Hampikian and J. E. Morral (The Minerals, Metals and Materials Society, Warrendale, 2001), p. 93.

    Google Scholar 

  63. V. K. Tolpygo and D. R. Clarke, Acta Materialia 48, 3283 (2000).

    Article  Google Scholar 

  64. Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, B. A. Pint, K. M. Cooley and P. K. Liaw, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials. Science 32, 1727 (2001).

    Google Scholar 

  65. V. Kindrachuk, N. Wanderka, J. Banhart, D. Genovese and J. Rosler, Acta Materialia 56, 1609 (2008).

    Article  Google Scholar 

  66. G. L. Erickson, in Superalloys, eds. R. D. Kissinger, D. J. Deye and D. L. Anton (The Minerals, Metals and Materials Society, Warrendale, 1996), p. 35.

    Google Scholar 

  67. K. Harris, G. L. Erickson, S. L. Sikkenga, W. D. Brentnall, J. M. Aurrecoechea and K. G. Kubarych, in Superalloys, eds. S. D. Antolovich, R. W. Stusrud, R. A. MacKay, et al. (The Minerals, Metals and Materials Society, Warrendale, 1992), p. 297.

    Google Scholar 

  68. A. F. Giamei and D. L. Anton, Metallurgical Transactions A 16, 1997 (1985).

    Article  Google Scholar 

  69. M. V. Acharya and G. E. Fuchs, Materials Science and Engineering A 381, 143 (2004).

    Article  Google Scholar 

  70. H. Hindam and D. P. Whitle, Oxidation of Metals 18, 245 (1982).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Project No. 12-ADV2398-04 as part of the National Science, Technology and Innovation Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tawancy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawancy, H.M., Al-Hadhrami, L.M., Mohammed, A.I. et al. Oxidation Behavior of Selected Bond Coats Based on the γ′ + γ Structure and Their Performance in Thermal Barrier Coatings Deposited on a Nickel-Based Superalloy. Oxid Met 83, 417–440 (2015). https://doi.org/10.1007/s11085-014-9525-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9525-0

Keywords

Navigation