Skip to main content
Log in

Influence of Aluminum and Rhenium on the Isothermal Oxidation Behavior of CoNiCrAlY Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of a Co32Ni21Cr8Al0.6Y (wt%) alloy with and without the addition of 3.5 wt% rhenium, 2 wt% aluminum or a combination of the two was investigated at 1000 °C. Results showed that increasing the Al content from 8 to 10 wt% led to an increase of the alloy β-phase, but did not affect the oxidation behavior. Re addition induced (Cr,Re,Y)-rich phase to precipitate in the alloy, accelerated the θ- to α-alumina transformation, reduced the oxidation rate and enhanced the rate of alloy Al diffusion. Adding both Al and Re further improved the oxidation behavior by promoting the development of the external alumina scale and suppressing the formation of Ni, Co containing spinel. This alloy also showed the largest reduction of oxidation rate and emerged to be the most beneficial. A continuous Cr–Re rich layer was observed at the oxide/alloy interface of the Re, Al containing alloy after longer oxidation times, but this layer is not expected to affect the continued growth of the alumina scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. J. Pomeroy, Materials and Design 26, 223 (2005).

    Article  CAS  Google Scholar 

  2. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne, J. Dorvaux, M. Poulain, R. Mévrel, and M. Caliez, Aerospace Science and Technology 7, 73 (2003).

    Article  CAS  Google Scholar 

  3. I. Gurrappa and A. Sambasiva Rao, Surface and Coatings Technology 201, 3016 (2006).

    Article  CAS  Google Scholar 

  4. M. Konter and M. Thumann, Journal of Materials Processing Technology 117, 386 (2001).

    Article  CAS  Google Scholar 

  5. N. P. Padture, M. Gell, and E. H. Jordan, Science 296, 280 (2002).

    Article  CAS  Google Scholar 

  6. X. C. Zhang, B. S. Xu, H. D. Wang, and Y. X. Wu, Materials and Design 27, 989 (2006).

    Article  CAS  Google Scholar 

  7. W. R. Chen, X. Wu, B. R. Marple, and P. C. Patnaik, Surface and Coatings Technology 201, 1074 (2006).

    Article  CAS  Google Scholar 

  8. J. Toscano, R. Vaßen, A. Gil, M. Subanovic, D. Naumenko, L. Singheiser, and W. J. Quadakkers, Surface and Coatings Technology 201, 3906 (2006).

    Article  CAS  Google Scholar 

  9. A. Rabiei and A. G. Evans, Acta Materialia 48, 3963 (2000).

    Article  CAS  Google Scholar 

  10. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  CAS  Google Scholar 

  11. P. Y. Hou, Journal of the American Ceramic Society 86, 660 (2003).

    Article  CAS  Google Scholar 

  12. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüssner, and K. B. Alexander, Materials Science and Engineering A 245, 201 (1998).

    Article  Google Scholar 

  13. B. A. Pint, Oxidation of Metals 45, 1 (1996).

    Article  CAS  Google Scholar 

  14. C. Leyens, B. A. Pint, and I. G. Wright, Surface and Coatings Technology 133–134, 15 (2000).

    Article  Google Scholar 

  15. W. Brandl, H. J. Grabke, D. Toma, and J. Kriiger, Surface and Coatings Technology 86–87, 41 (1996).

    Article  Google Scholar 

  16. N. Czech, F. Schmitz, and W. Stamm, Surface and Coatings Technology 68–69, 17 (1994).

    Article  Google Scholar 

  17. N. Czech, F. Schmitz, and W. Stamm, Surface and Coatings Technology 76–77, 28 (1995).

    Article  Google Scholar 

  18. M. A. Philips and B. Gleeson, Oxidation of Metals 50, 399 (1998).

    Article  Google Scholar 

  19. L. Huang, X. F. Sun, H. R. Guan, and Z. Q. Hu, Surface and Coatings Technology 201, 1421 (2006).

    Article  CAS  Google Scholar 

  20. E. A. G. Shillington and D. R. Clarke, Acta Materialia 47, 1297 (1999).

    Article  CAS  Google Scholar 

  21. P. Krukovsky, V. Kolarik, K. Tadlya, and A. Rybnikov, Surface and Coatings Technology 177–178, 32 (2004).

    Article  Google Scholar 

  22. W. Beele, N. Czech, W. J. Quadakkers, and W. Stamm, Surface and Coatings Technology 94–95, 41 (1997).

    Article  Google Scholar 

  23. A. K. Ray and R. W. Steinbrech, Journal of the European Ceramic Society 19, 2097 (1999).

    Article  CAS  Google Scholar 

  24. F. Tang, L. Ajdelsztajn, and J. M. Schoenung, Oxidation of Metals 61, 219 (2004).

    Article  CAS  Google Scholar 

  25. N. Czech, F. Schmitz, and W. Stamm, Materials and Manufacturing Processes 10, 1021 (1995).

    Article  CAS  Google Scholar 

  26. M. Venkatraman and J. P. Nenmann, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, OH, 1990), p. 1319.

    Google Scholar 

  27. D. R. G. Achar, R. Muñoz-Arroyo, L. Singheiser, and W. J. Quadakkers, Surface and Coatings Technology 187, 272 (2004).

    Article  CAS  Google Scholar 

  28. B. A. Pint, J. R. Martin, and L. W. Hobbs, Solid State Ionics 78, 99 (1995).

    Article  CAS  Google Scholar 

  29. P. Burtin, J. P. Brunelle, and M. Soustelle, Applied Catalysis 34, 225 (1987).

    Article  CAS  Google Scholar 

  30. J. A. Dean, Lange’s Chemistry Handbook, 13th edn. (McGraw-Hill Company Press, New York, 1985), p. 1531.

    Google Scholar 

  31. G. Erickson, K. Harris, and R. Schwer, A Third Generation High Strength Single Crystal Superalloy (Cannon-Muskegon Corp., Muskegon, MI, 1985).

    Google Scholar 

  32. Q. Zeng, S. W. Ma, Y. R. Zheng, S. Z. Liu, and T. Zhai, Journal of Alloys and Compounds 480, 987 (2009).

    Article  CAS  Google Scholar 

  33. D. F. Susan and A. R. Marder, Acta Materialia 49, 1153 (2001).

    Article  CAS  Google Scholar 

  34. T. Narita, F. Lang, K. Z. Thosin, T. Yoshioka, T. Izumi, H. Yakuwa, and S. Hayashi, Oxidation of Metals 68, 343 (2007).

    Article  CAS  Google Scholar 

  35. F. Lang and T. Narita, Intermetallics 15, 599 (2007).

    Article  CAS  Google Scholar 

  36. D. Sumoyama, K. Z. Thosin, T. Nishimoto, T. Yoshioka, T. Izumi, S. Hayashi, and T. Narita, Oxidation of Metals 68, 313 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support of Mitsubishi Heavy Industries (MHI) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-G. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, H., Hou, P.Y., Yang, ZG. et al. Influence of Aluminum and Rhenium on the Isothermal Oxidation Behavior of CoNiCrAlY Alloys. Oxid Met 75, 77–92 (2011). https://doi.org/10.1007/s11085-010-9221-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9221-7

Keywords

Navigation