Skip to main content
Log in

An efficient asymmetric bidirectional quantum teleportation protocol and the analysis of its performance over noisy environments

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This research presents a new bidirectional quantum teleportation (BQT) protocol for transmitting two single-qubit states from Alice to Bob and a three-qubit entangled state from Bob to Alice, simultaneously. The protocol utilizes shared entanglement between the parties and requires performing two Bell-state measurements and a GHZ-state measurement. The protocol’s functionality is validated by implementing the circuit in the Qiskit library. Moreover, the effects of amplitude–damping noise and bit-flip noise are evaluated and analyzed. The protocol is compared with the recent schemes and its effectiveness is shown in terms of efficiency of the transmitted information. The protocol will contribute to the advancement of bidirectional quantum teleportation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors, upon reasonable request.

References

Download references

Acknowledgements

Not applicable.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

MB: Conceptualization—Writing—original draft—Quantum computing & Software. AAO: Supervision—review & editing. MH: Supervision—Advisor—review & editing.

Corresponding author

Correspondence to Ali Asghar Orouji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Human and animal rights

Not applicable.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

$$ \begin{gathered} \left. {\left| \Psi \right.} \right\rangle = \left. {\left| {A_{1} A_{2} } \right.} \right\rangle \otimes |\left. {a_{1} a_{2} a_{3} a_{4} a_{5} b_{2} b_{3} } \right\rangle \hfill \\ \frac{1}{4\sqrt 2 } \left[ {\left. {\left| {\phi_{1}^{ + } } \right.} \right\rangle \left. {\left| {\phi_{1}^{ + } } \right.} \right\rangle \otimes \left( {\beta_{0} \left. {\left| {000} \right.} \right\rangle + \beta_{1} \left. {\left| {111} \right.} \right\rangle } \right) \otimes \left( {\alpha_{0} \alpha_{0}{\prime} \left. {\left| {00} \right.} \right\rangle + \alpha_{0} \alpha_{1}{\prime} \left. {\left| {01} \right.} \right\rangle + \alpha_{1} \alpha_{0}{\prime} \left. {\left| {10} \right.} \right\rangle + \alpha_{1} \alpha_{1}{\prime} \left. {\left| {11} \right.} \right\rangle } \right)} \right] \hfill \\ + \frac{1}{4\sqrt 2 } \left[ {\left. {\left| {\phi_{1}^{ + } } \right.} \right\rangle \left. {\left| {\phi_{1}^{ - } } \right.} \right\rangle \otimes \left( {\beta_{0} \left. {\left| {000} \right.} \right\rangle + \beta_{1} \left. {\left| {111} \right.} \right\rangle } \right) \otimes \left( {\alpha_{0} \alpha_{0}{\prime} \left. {\left| {11} \right.} \right\rangle + \alpha_{0} \alpha_{1}{\prime} \left. {\left| {10} \right.} \right\rangle + \alpha_{1} \alpha_{0}{\prime} \left. {\left| {01} \right.} \right\rangle + \alpha_{1} \alpha_{1}{\prime} \left. {\left| {00} \right.} \right\rangle } \right)} \right] \hfill \\ + \frac{1}{4\sqrt 2 } \left[ {\left. {\left| {\phi_{1}^{ + } } \right.} \right\rangle \left. {\left| {\phi_{2}^{ + } } \right.} \right\rangle \otimes \left( {\beta_{0} \left. {\left| {000} \right.} \right\rangle + \beta_{1} \left. {\left| {111} \right.} \right\rangle } \right) \otimes \left( {\alpha_{0} \alpha_{0}{\prime} \left. {\left| {01} \right.} \right\rangle + \alpha_{0} \alpha_{1}{\prime} \left. {\left| {00} \right.} \right\rangle + \alpha_{1} \alpha_{0}{\prime} \left. {\left| {11} \right.} \right\rangle + \alpha_{1} \alpha_{1}{\prime} \left. {\left| {10} \right.} \right\rangle } \right)} \right] \hfill \\ + \frac{1}{4\sqrt 2 } \left[ {\left. {\left| {\phi_{1}^{ + } } \right.} \right\rangle \left. {\left| {\phi_{2}^{ - } } \right.} \right\rangle \otimes \left( {\beta_{0} \left. {\left| {000} \right.} \right\rangle + \beta_{1} \left. {\left| {111} \right.} \right\rangle } \right) \otimes \left( {\alpha_{0} \alpha_{0}{\prime} \left. {\left| {10} \right.} \right\rangle + \alpha_{0} \alpha_{1}{\prime} \left. {\left| {11} \right.} \right\rangle + \alpha_{1} \alpha_{0}{\prime} \left. {\left| {00} \right.} \right\rangle + \alpha_{1} \alpha_{1}{\prime} \left. {\left| {01} \right.} \right\rangle } \right)} \right] \hfill \\ + \frac{1}{4\sqrt 2 } \left[ {\left. {\left| {\phi_{1}^{ - } } \right.} \right\rangle \left. {\left| {\phi_{1}^{ + } } \right.} \right\rangle \otimes \left( {\beta_{0} \left. {\left| {000} \right.} \right\rangle + \beta_{1} \left. {\left| {111} \right.} \right\rangle } \right) \otimes \left( {\alpha_{0} \alpha_{0}{\prime} \left. {\left| {00} \right.} \right\rangle - \alpha_{0} \alpha_{1}{\prime} \left. {\left| {01} \right.} \right\rangle + \alpha_{1} \alpha_{0}{\prime} \left. {\left| {10} \right.} \right\rangle - \alpha_{1} \alpha_{1}{\prime} \left. {\left| {11} \right.} \right\rangle } \right)} \right] \hfill \\ + \frac{1}{4\sqrt 2 } \left[ {\left. {\left| {\phi_{2}^{ - } } \right.} \right\rangle \left. {\left| {\phi_{2}^{ + } } \right.} \right\rangle \otimes \left( {\beta_{0} \left. {\left| {000} \right.} \right\rangle + \beta_{1} \left. {\left| {111} \right.} \right\rangle } \right) \otimes \left( {\alpha_{0} \alpha_{0}{\prime} \left. {\left| {01} \right.} \right\rangle + \alpha_{0} \alpha_{1}{\prime} \left. {\left| {00} \right.} \right\rangle - \alpha_{1} \alpha_{0}{\prime} \left. {\left| {11} \right.} \right\rangle - \alpha_{1} \alpha_{1}{\prime} \left. {\left| {10} \right.} \right\rangle } \right)} \right] \hfill \\ + \frac{1}{4\sqrt 2 } \left[ {\left. {\left| {\phi_{2}^{ - } } \right.} \right\rangle \left. {\left| {\phi_{2}^{ - } } \right.} \right\rangle \otimes \left( {\beta_{0} \left. {\left| {000} \right.} \right\rangle + \beta_{1} \left. {\left| {111} \right.} \right\rangle } \right) \otimes \left( {\alpha_{0} \alpha_{0}{\prime} \left. {\left| {10} \right.} \right\rangle + \alpha_{0} \alpha_{1}{\prime} \left. {\left| {11} \right.} \right\rangle - \alpha_{1} \alpha_{0}{\prime} \left. {\left| {00} \right.} \right\rangle - \alpha_{1} \alpha_{1}{\prime} \left. {\left| {01} \right.} \right\rangle } \right)} \right]. \hfill \\ \end{gathered} $$
(32)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolokian, M., Orouji, A.A. & Houshmand, M. An efficient asymmetric bidirectional quantum teleportation protocol and the analysis of its performance over noisy environments. Opt Quant Electron 56, 1082 (2024). https://doi.org/10.1007/s11082-024-06968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06968-6

Keywords

Navigation