Skip to main content
Log in

A Novel Protocol for Bidirectional Controlled Quantum Teleportation of Two-Qubit States Via Seven-Qubit Entangled State in Noisy Environment

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a novel protocol of bidirectional controlled quantum teleportation (BCQT) via seven-qubit state is proposed. Where Alice and Bob, two legitimate users, can teleport two-qubit states to each other. In the whole process, users achieve the initial state based on preprocessing of quantum channel, Bell-state measurement (BSM), single-qubit measurement (SM), unitary operations and so on. The main superiority of the proposed protocol is more efficient compared with previous work. In addition, the proposed protocol is considered in noisy channel, it shows that the fidelities under amplitude-damping (AD) and phase-damping (PD) noise only rest with the amplitude parameter of the initial state and the decoherence noisy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an Unkown quantum state via dual classical and {EPR} channels. Phys. Rev. Lett. 70, 1895–1899 (1993). 10.1.1.46.9405

    Article  ADS  MathSciNet  Google Scholar 

  2. Zhou, R.G., Qian, C., Ian, H.: Bidirectional quantum teleportation of two-qubit state via four-qubit cluster state. Int. J. Theor. Phys. 58, 150–156 (2019). https://doi.org/10.1007/s10773-018-3919-8

    Article  MATH  Google Scholar 

  3. Huang, S.M.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 380–383 (2016). https://doi.org/10.1007/s10773-015-2670-7

    Article  MATH  Google Scholar 

  4. Jiang, S.F.M.: Bidirectional and asymmetric controlled quantum information transmission via five-qubit Brown state. International. 56, 1530–1536 (2017). https://doi.org/10.1007/s10773-017-3292-z

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014). https://doi.org/10.1007/s10773-014-2131-8

    Article  MATH  Google Scholar 

  6. Hu, T., Xue, K., Sun, C., Wang, G., Ren, H.: Quantum teleportation and dense coding via topological basis. Quantum Inf. Process. 12, 3369–3381 (2013). https://doi.org/10.1007/s11128-013-0614-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013). https://doi.org/10.1007/s10773-012-1208-5

    Article  MathSciNet  Google Scholar 

  8. Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state. Int. J. Theor. Phys. 53, 1454–1458 (2014). https://doi.org/10.1007/s10773-013-1943-2

    Article  MATH  Google Scholar 

  9. Tan, X., Zhang, X., Song, T.: Deterministic quantum teleportation of a particular six-qubit state using six-qubit cluster state. Int. J. Theor. Phys. 55, 155–160 (2016). https://doi.org/10.1007/s10773-015-2645-8

    Article  MATH  Google Scholar 

  10. Zhou, R.-G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access. 7, 1 (2019). https://doi.org/10.1109/ACCESS.2019.2901960

    Article  Google Scholar 

  11. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014). https://doi.org/10.1007/s10773-014-2065-1

    Article  MATH  Google Scholar 

  12. Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 384–387 (2016). https://doi.org/10.1007/s10773-015-2671-6

    Article  MATH  Google Scholar 

  13. Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a Quantum Channel. Int. J. Theor. Phys. 56, 2101–2112 (2017). https://doi.org/10.1007/s10773-017-3353-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Y., Du, J., Liu, S., Wang, X.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 1–9 (2017). https://doi.org/10.1007/s11128-017-1648-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Sang, Z.: Cyclic controlled teleportation by using a seven-qubit. Int. J. Theor. Phys. 57, 3835–3838 (2018)

    Article  MathSciNet  Google Scholar 

  16. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n -qubit quantum state. Quantum Inf. Process. 16, 1–19 (2017). https://doi.org/10.1007/s11128-017-1744-2

    Article  MathSciNet  Google Scholar 

  17. Sabir, D.J.M.: Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states. Quantum Inf. Process. 17, 1–11 (2018). https://doi.org/10.1007/s11128-018-1937-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, G., Lian, B.W., Nie, M., Jin, J.: Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement. Chinese Phys. B. 26, (2017). https://doi.org/10.1088/1674-1056/26/4/040305

    Article  ADS  Google Scholar 

  19. Hou, K., Bao, D.Q., Zhu, C.J., Yang, Y.P.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18, 1–19 (2019). https://doi.org/10.1007/s11128-019-2218-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016). https://doi.org/10.1007/s11128-015-1194-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Sun, Y.R., Xu, G., Chen, X.B., Yang, Y., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in Noisy environment. IEEE Access. 7, 2811–2822 (2019). https://doi.org/10.1109/ACCESS.2018.2885340

    Article  Google Scholar 

  22. Sarvaghad-Moghaddam, M.: Bidirectional controlled quantum teleportation using eight-qubit quantum channel in noisy environments. Quantum Phys. (2018)

  23. Liang, X.-T., Fan, H.-Y.: Entanglement-assisted classical capacities of some single qubit quantum Noisy channels. Mod. Phys. Lett. B. 16, 441–448 (2002). https://doi.org/10.1142/s0217984902003890

    Article  ADS  MATH  Google Scholar 

  24. Search, H., Journals, C., Contact, A., Iopscience, M., Address, I.P.: Enhanced Multiparty Controlled QSDC Using GHZ State. 1007, (2011)

Download references

Acknowledgements

This work is supported by the National Key R&D Plan under Grant No. 2018YFC1200200 and 2018YFC1200205, National Natural Science Foundation of China under Grant No. 61463016 and “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300. H.I. and National Natural Science Foundation of China under grant No.11404415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Qian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, RG., Qian, C. & Xu, R. A Novel Protocol for Bidirectional Controlled Quantum Teleportation of Two-Qubit States Via Seven-Qubit Entangled State in Noisy Environment. Int J Theor Phys 59, 134–148 (2020). https://doi.org/10.1007/s10773-019-04302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04302-5

Keywords

Navigation