Skip to main content
Log in

A Quantum Dialogue Protocol in Discrete-time Quantum Walk Based on Hyperentangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Due to the influence of external environment and internal factors, the security of quantum dialogue is facing huge challenges. In order to improve the security of quantum dialogue, we proposed the feasible and efficient quantum dialogue protocol with hyperentangled states in discrete-time quantum walk. In the proposed protocol, the trusted third party and both communicating parties entangle themselves via GHZ states and distribute their secret keys. The communicating party(Alice) prepares and signs her message and obtains an entangled quantum set of message and signature. And the other communicating party(Bob) verifies Alice’s signature with the the trusted third party’s help. Then, Alice and Bob perform a discrete-time quantum walk in the network until they meet at a node. Meanwhile, Alice and Bob have a quantum dialogue at the node where they meet. We provide detailed security analysis of the proposed protocol. Security analysis of the proposed protocol against both inside and outside attacks proves that attackers cannot extract any secret information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett, C.H.: Quantum cryptography : Public key distribution and coin tossing[C]. Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, 1984 Institute of Electrical and Electronics Engineers (1984)

  2. Jin, X.M., Ren, J.G., Yang, B., et al.: Experimental free-space quantum teleportation[J]. Nat. Photonics 4(6), 376–381 (2010)

    ADS  Google Scholar 

  3. Yin, J., et al.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature 488(7410), 185–188 (2012)

    ADS  Google Scholar 

  4. Ren, J., Xu, P., Yong, H., et al.: Ground-to-satellite quantum teleportation[J]. Nature 549(7670), 70–73 (2017)

    ADS  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Mattle, K., Weinfurter, H., Kwiat, P.G., et al.: Dense coding in experimental quantum communication[J]. Phys. Rev. Lett. 76(25), 4656–4659 (1996)

    ADS  Google Scholar 

  7. Hu, X., Guo, Y., Liu, B., et al. : Beating the channel capacity limit for superdense coding with entangled ququarts[J]. Science Advances 4(7), eaat9304- (2018)

    ADS  Google Scholar 

  8. Deng, F.G., Long, G., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J]. Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  9. Chen, X.B., Wang, T.Y., Du, J.Z., et al.: Controlled quantum secure direct communication with quantum encryption[J]. Int. J. Quantum Inf. 06(03), 543–551 (2008)

    MATH  Google Scholar 

  10. Farouk, A., Zakaria, M., Megahed, A.A., et al.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication[J]. Sci. Rep. 5(1), 16080 (2015)

    ADS  Google Scholar 

  11. Hillery, M., Bužek, V, Berthiaume, A., et al.: Quantum secret sharing[J]. Phys. Rev. A 59(3), 1829–1834 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Abulkasim, H., Hamad, S., El Bahnasy, K., et al. : Authenticated quantum secret sharing with quantum dialogue based on Bell states[J]. Physica Scripta 91(8), 085101 (2016)

    ADS  Google Scholar 

  13. Abulkasim, H., Hamad, S., El Bahnasy, K.: Authenticated quantum secret sharing with quantum dialogue based on Bell states[J]. Physica Scripta 91(8), 085101 (2016)

    ADS  Google Scholar 

  14. Nguyen, B.A.: Quantum dialogue[J]. Phys. Lett. A 328(1), 6–10 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Zhou, N.R., Li, J.F., Yu, Z.B., et al.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states[J]. Quantum Inf. Process 16(1), 1–16 (2017)

    ADS  MATH  Google Scholar 

  16. Zhou, N., Zeng, G., Xiong, J., et al.: Quantum key agreement protocol[J]. Electron. Lett. 40(18), 1149–1150 (2004)

    ADS  Google Scholar 

  17. Cao, H., Ma, W.: Multi-party traveling-mode quantum key agreement protocols immune to collusive attack[J]. Quantum Info. Process. 17(9), 219– (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Ma, H.Y., Xu, P.A., Shao, C.H., et al.: Quantum private query based on stable error correcting code in the case of Noise[J]. Int. J. Theor. Phys. 58(12), 4241–4248 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Ma, H.Y., Teng, J.K., Hu, T., et al. : Co-communication Protocol of Underwater Sensor Networks with Quantum and Acoustic Communication Capabilities[J]. Wireless Personal Communications (11) (2020)

  20. Shi, P., Li, N.C., Wang, S.M., Liu, Z., Ren, M.R., Ma, H.Y.: Quantum Multi-User broadcast protocol for the “Platform as a service” Model[J]. Sensors 19(23), 5257 (2019)

    Google Scholar 

  21. Long, G., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  22. Boström, K.J., Felbinger, T.: Deterministic secure direct communication using entanglement.[J]. Phys.Rev. Lett. 89(18), 187902–187902 (2002)

    ADS  Google Scholar 

  23. Wójcik, A.: Eavesdropping on the “Ping-Pong” quantum communication protocol[J]. Phys.Rev. Lett. 90(15), 157901 (2003)

    ADS  Google Scholar 

  24. Cai, Q.Y.: The ‘ping-pong” protocol can be attacked without eavesdropping[J]. Phys.Rev. Lett. 91(10), 109801 (2003)

    ADS  Google Scholar 

  25. Cai, Q.Y.: Improving the capacity of the Boström-Felbinger protocol[J]. Phys. Rev. A 69(5), 054301 (2004)

    ADS  Google Scholar 

  26. Li, X.H., Li, C.Y., Deng, F.G., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states[J]. Chin. Phys. 16(8), 2149–2153 (2007)

    Google Scholar 

  27. Ren, B.C., Wei, H.R., Hua, M., et al.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems[J]. The European Physical Journal D 67(2), 1–8 (2013)

    Google Scholar 

  28. Chang, C.H., Yang, C.W., Hzu, G.R., et al.: Quantum dialogue protocols over collective noise using entanglement of GHZ state[J]. Quantum Inf. Process 15(7), 2971–2991 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, H., Zhang, Y.Q., Liu, X.F., et al.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage[J]. Quantum Inf. Process 15(6), 2593–2603 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Liu, Z.H., Chen, H.W.: Cryptanalysis and improvement of efficient quantum dialogue using entangled states and entanglement swapping without information leakage[J]. Quantum Inf. Process 16(9), 229 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Qi, J.M., Xu, G., Chen, X.B., et al.: Two authenticated quantum dialogue protocols based on three-particle entangled states[J]. Quantum Inf. Process. 17(9), 247– (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Wang, H., Zhang, Y.Q., Wu, G.F., et al.: Authenticated quantum dialogue without information Leakage[J]. Chin. J. Electron. 27(2), 270–275 (2018)

    Google Scholar 

  33. Li, L.L., Zhang, Y., Wen, S., et al.: Deterministic quantum secure direct communication and authentication protocol based on W-Class State[J]. Chin. J. Electron. 27(2), 276–280 (2018)

    Google Scholar 

  34. Liu, Z.H., Chen, H.W.: Analyzing and revising quantum dialogue without information leakage based on the entanglement swapping between any two bell states and the shared secret bell state. Int. J. Theor. Phys. 58(3), 575–583 (2018)

    MATH  Google Scholar 

  35. Brassard, G., Broadbent, A., Fitzsimons, J., et al.: Anonymous quantum communication[C]. In: Advances in Cryptology Asiacrypt 2007, 3th International Conference on the Theory and Application of Cryptology and Information Security, pp 460–473 (2007)

  36. Jiang, L., He, G.Q., Nie, D., et al.: Quantum anonymous voting for continuous variables[J]. Phys. Rev. A 85(4), 042309 (2012)

    ADS  Google Scholar 

  37. Mohapatra, A.K., Balakrishnan, S.: Controllerindependent bidirectional quantum direct communication[J]. Quantum Inf. Processing. 16(6), 1–11 (2017)

    Google Scholar 

  38. Zhang, L., Dong, S., Zhang, K.J., et al.: A controller-independent quantum dialogue protocol with four-particle states[J]. Int. J. Theor. Phys. 58(6), 1927–1936 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks[J]. Sci. Bull. 65(1), 12–20 (2020)

    Google Scholar 

  40. Zhou, Z.R., Sheng, Y.B., Niu, P.H., et al. : Measurement-device-independent quantum secure direct communication[J]. Science China Physics, Mechanics & Astronomy 63(3), 230362 (2020)

    Google Scholar 

  41. Gao, Z., Li, T., Li, Z.: Long-distance measurement-device–independent quantum secure direct communication[J]. EPL (Europhysics Letters) 125 (4), 40004 (2019)

    ADS  Google Scholar 

  42. Chen, S.S., Zhou, L., Zhong, W., et al.: Three-step three-party quantum secure direct communication[J]. Science China Physics, Mechanics & Astronomy 61(9), 90312 (2018)

    ADS  Google Scholar 

  43. Li, T., Long, G.: Quantum secure direct communication based on single-photon Bell-state measurement[J]. New J. Phys. 063017, 22 (2020)

    MathSciNet  Google Scholar 

  44. He, R., Ma, J.G., Wu, J.: A quantum secure direct communication protocol using entangled beam pairs[J]. EPL (Europhysics Letters) 127(5), 50006 (2019)

    ADS  Google Scholar 

  45. Hu, J.Y., Yang, L., Wu, S.X., et al.: Security proof of the two-way quantum secure direct communication with channel loss and noise[J]. EPL (Europhysics Letters) 129(1), 10004 (2020)

    ADS  Google Scholar 

  46. Chai, G., Li, D., Cao, Z., et al.: Blind channel estimation for continuous-variable quantum key distribution[J]. Quantum Engineering, pp. e37 (2020)

  47. Cui, Z.X., Zhong, W., Zhou, L., et al. : Measurement-device-independent quantum key distribution with hyper-encoding[J]. Science China Physics, Mechanics & Astronomy 62(11), 110311 (2019)

    ADS  Google Scholar 

  48. Shang, T., Tang, Y., Chen, R., et al.: Full quantum one-way function for quantum cryptography[J]. Quantum Engineering 2(1), e32 (2020)

    Google Scholar 

  49. Liu, Z., Chen, H.: Analyzing and improving the secure quantum dialogue protocol based on four-qubit cluster state[J]. Int. J. Theoretical Phys. (3) (2020)

  50. Man, Z.X., Xia, Y.J., An, N.B., et al.: Quantum secure direct communication by using GHZ states and entanglement swapping[J]. J. Phys. B 39(18), 3855–3863 (2006)

    ADS  Google Scholar 

Download references

Acknowledgments

The work is supported by was supported by National Natural Science Foundation of China(No.11975132, 61772295); Natural Science Foundation of Shandong Province, China(No.ZR2019YQ01); Project of Shandong Province Higher Educational Science and Technology Program (No.J18KZ012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yang Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Zhang, X., Xu, PA. et al. A Quantum Dialogue Protocol in Discrete-time Quantum Walk Based on Hyperentangled States. Int J Theor Phys 59, 3491–3507 (2020). https://doi.org/10.1007/s10773-020-04611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04611-0

Keywords

Navigation