Skip to main content
Log in

Bidirectional quantum teleportation using a five-qubit cluster state as a quantum channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To minimize the quantum resources consumed by the quantum channel and the classical resources consumed in the communication process, this paper proposes bidirectional quantum teleportation using a five-qubit cluster state as the quantum channel. Alice sends her message, a pure entangled-state EPR pair, to the receiver, Bob. Bob also sends his message, a single quantum state, to Alice, so that both parties can successfully complete the asymmetric quantum teleportation process. A local-based controlled-NOT gate (CNOT gate) operation is used to transform the five-qubit cluster state into a different state from the past. According to the GHZ state measurement, the Bell state measurement, and the corresponding unitary transformation, the communication parties can complete the asymmetric quantum teleportation process. Because this paper does not involve third-party controllers, it reduces resource consumption and operational complexity and optimizes transmission efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  2. Feynman, R.P.: Simulating physics with quantum computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Google Scholar 

  3. Sun, H., Liu, S., Lin, W., et al.: Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 5(1), 1–9 (2014)

    ADS  Google Scholar 

  4. Li, H.S., Fan, P., Xia, H.Y., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Reg. Papers 66(1), 341–354 (2019)

    Google Scholar 

  5. Li, H.S., Fan, P., Xia, H., et al.: Efficient quantum arithmetic operation circuits for quantum image processing. Sci China-Phys. Mech. Astron. 63(8), 280311 (2020)

    ADS  Google Scholar 

  6. Li, H.S., Fan, P., Peng, H., Song, S., Long, G. L.: Multilevel 2-d quantum wavelet transforms. IEEE Trans. Cybern. (2021). [Online]. Available: https://ieeexplore.ieee.org/document/9337176

  7. Bennett, C. H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  9. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Al-Amri, M., Evers, J., Zubairy, M.S.: Quantum teleportation of four-dimensional qudits. Phys. Rev. A 82(2), 8932–8932 (2010)

    Google Scholar 

  11. Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multi-partite cluster states. Phys. Rev. A 78(6), 5175–5179 (2008)

    Google Scholar 

  12. Agrawal, P., Pati, A.K.: Perfect Teleportation and Superdense Coding With W-States. Phys. Rev. A. 74(6), 154–154 (2006)

    Google Scholar 

  13. Dalvit, D.A.R., Filho, R.L.D.M., Toscano, F.: Quantum metrology at the Heisenberg limit with ion trap motional compass states. New J. Phys. 8(11), 276–276 (2006)

    ADS  Google Scholar 

  14. Marcikic, I., Riedmatten, H.D., Tittel, W., Zbinden, H., Gisin, N.: Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421(6922), 509–513 (2003)

    ADS  Google Scholar 

  15. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: quantum teleportation across the Danube. Nature 430(7002), 849 (2004)

    ADS  Google Scholar 

  16. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A. 82, 032318 (2010)

    ADS  Google Scholar 

  17. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 516, 518 (2015)

    Google Scholar 

  18. Luo, Y.H., Zhong, H.S., Erhard, M., Wang, X.L., Peng, L.C., Krenn, M., Jiang, X., Li, L., Liu, N.L., Lu, C.Y.: Quantum Teleportation in High Dimensions. Phys. Rev. Lett. 123, 070505 (2019)

    ADS  Google Scholar 

  19. Hu, X.M., Zhang, C., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental multi-level quantum teleportation. Phys. Rev. Lett. 125, 230501 (2020)

    ADS  Google Scholar 

  20. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A. 92, 042314 (2015)

    ADS  Google Scholar 

  21. Hu, X.-M., Zhang, C., Zhang, C.-J., Liu, B., Guo, G.: Experimental certification for nonclassical teleportation. Quantum Eng. 1(2), e13 (2019)

    Google Scholar 

  22. Rigolin, G.: Quantum teleportation of an arbitrary two qubit state and its relation to multipartite entanglement. Phys. Rev. A 72(3), 309–315 (2005)

    MathSciNet  Google Scholar 

  23. Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states. Eur. Phys. J. D. 49(1), 129–134 (2008)

    ADS  Google Scholar 

  24. Zuo, X.Q., Liu, Y.M., Wen, Z., Zhang, Z.J.: Simpler criterion on W state for perfect quantum state splitting and quantum teleportation. Sci. China, Ser. G 12, 1906–1912 (2009)

    Google Scholar 

  25. Man, Z.X., Xia, Y.J., An, N.B.: Quantum teleportation of an unknown N-Qubit W-Like state. JETP Lett. 85(12), 662–666 (2007). https://doi.org/10.1134/s0021364007120168

    Article  ADS  Google Scholar 

  26. Yuan, W.: Quantum Teleportation of an Arbitrary Three-Qubit State Using GHZ-Like States. Int J Theor Phys. 54, 851–855 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Choudhury, B.S., Samanta, S.: Asymmetric Bidirectional 3↔2 Qubit Teleportation Protocol Between Alice and Bob Via 9-qubit Cluster State. Int J Theor Phys. 56(10), 3285–3296 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf Process. 12(12), 3835–3844 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Huelga, S.F., Plenio, M.B., Vaccaro, J.: Remote control of restricted sets of operations: Teleportation of angles. Phys. Rev. A. 65(4) (2002)

  30. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional Quantum Controlled Teleportation via Five-Qubit Cluster State. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    MathSciNet  Google Scholar 

  31. Li, Y.H., Nie, L.P.: Bidirectional Controlled Teleportation by Using a Five-Qubit Composite GHZ-Bell State. Int J Theor Phys. 52(5), 1630–1634 (2013)

    MathSciNet  Google Scholar 

  32. Duan, Y.J., Zha, X.W.: Bidirectional Quantum Controlled Teleportation via a Six-Qubit Entangled State. Int J Theor Phys. 53(11), 3780–3786 (2014)

    MATH  Google Scholar 

  33. Zhou, R., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access. PP(99), 1–1 (2019)

  34. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional Teleportation of a Two-Qubit State by Using Eight-Qubit Entangled State as a Quantum Channel. Int J Theor Phys. 56(7), 2101–2112 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Ming-huang, S.: Bidirectional Quantum Teleportation by Using Five-qubit Cluster State. Int J Theor Phys. 55, 1333–1335 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric Bidirectional Controlled Teleportation by Using Six-qubit Cluster State. Int J Theor Phys. 55(6), 3008–3016 (2016)

    MATH  Google Scholar 

  37. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf Process. 15(2), 929–945 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State. Int. J. Theor. Phys. 55(10), 4197–4204 (2016)

    MATH  Google Scholar 

  39. Zhou, R.G., Li, X., Qian, C., Lan, H.: Quantum Bidirectional Teleportation 2 ↔ 2 or 2 ↔ 3 Qubit Teleportation Protocol Via 6-Qubit Entangled State. Int. J. Theor. Phys. 59, 166–172 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Sun, X.M., Zha, X.W.: A Scheme of Bidirectional Quantum Controlled Teleportation via Six-qubit Maximally Entangled State. Acta. Photonica. Sinica. 42(9), 1052–1056 (2013)

    Google Scholar 

  42. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)

    Google Scholar 

  43. Fu, H.Z., Tian, X.L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53, 1840–1847 (2014)

    MATH  Google Scholar 

  44. Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state. Int. J. Theor. Phys. 53, 1454–1458 (2014)

    MATH  Google Scholar 

  45. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangledstate. Int. J. Theor. Phys. 53, 2697–2707 (2014)

    MATH  Google Scholar 

  46. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015)

    MATH  Google Scholar 

  47. Wang, J.W., Shu, L.: Bidirectional quantum controlled teleportation of qudit state via partially entangled GHZ-type states. Int. J. Modern Phys. B, Condensed Matter Phys. 29(18), 1550122–1–1550122–10 (2015)

  48. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Hassanpour, Sh., Houshmand, M.: Bidirectional quantum controlled teleportation by using EPR states and entanglement swapping. In: 23th Iranian Conference on Electrical Engineering (ICEE) (2015)

  50. Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A 93, 0623305 (2016)

    Google Scholar 

  51. Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 384–387 (2016)

    MATH  Google Scholar 

  52. Sang, M.H.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 380–383 (2016)

    MATH  Google Scholar 

  53. Hassanpour, Sh., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Jiang, Y.L., Zhou, R.G., Hao, D.Y., Hu, W.W.: Bidirectional Controlled Quantum Teleportation of Three-Qubit State by a New Entangled Eleven-Qubit State. International Journal of Theoretical Physics. 1–13 (2021)

  55. Wang, J., Huang, L.: Asymmetric bidirectional quantum teleportation via six-qubit partially entangled state. International Journal of Modern Physics B. (2021)

  56. He, M.Y., Ma, S.Y., Kang, K.P.: A universal protocol for bidirectional controlled teleportation with network coding. Commun. Theor. Phys. 73, 105104 (2021)

    ADS  MathSciNet  Google Scholar 

  57. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008). https://doi.org/10.1088/0953-4075/41/14/145506

    Article  ADS  Google Scholar 

  58. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf Process. 10, 231–239 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No.61762012, the Science and Technology Project of Guangxi under Grant No. 2020GXNSFDA238023, the Innovation Project of Guangxi Graduate Education under Grant No. YCSW2020103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Sheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, HS. Bidirectional quantum teleportation using a five-qubit cluster state as a quantum channel. Quantum Inf Process 21, 44 (2022). https://doi.org/10.1007/s11128-021-03389-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03389-2

Keywords

Navigation