Skip to main content
Log in

New solitary wave solutions of space-time fractional dynamical models

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, new traveling wave solutions are retrieved for two space-time fractional models: the resonant nonlinear Schrödinger equation and the Biswas–Milovic equation which illustrates the dynamics of optical soliton promulgation in optical fibers, both featuring Kerr law nonlinearity. These equations are explored via an efficient method namely, the extended simple equation method. The fractional derivative is used in the conformable sense to accomplish this analysis. The extracted solutions show dark, periodic, singular, and singular-periodic solitons behaviors, which are depicted graphically by using line, surface, and contour plots. The reported solutions are unique and novel. The proposed method distinguishes itself by its simplicity, reliability, and ability to generate novel soliton solutions for nonlinear Schrödinger equations within the realm of mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  • Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  • Akbar, M.A., Wazwaz, A.M., Mahmud, F., Baleanu, D., Roy, R., Barman, H.K., Osman, M.S.: Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results Phys. 43, 106079 (2022)

    Article  Google Scholar 

  • Akbar, M.A., Abdullah, F.A., Islam, M.T., Al Sharif, M.A., Osman, M.S.: New solutions of the soliton type of shallow water waves and superconductivity models. Results Phys. 44, 106180 (2023)

    Article  Google Scholar 

  • Apeanti, W.O., Lu, D., Zhang, H., Yaro, D., Akuamoah, S.W.: Traveling wave solutions for complex nonlinear spaceâ time fractional order (2+ 1)-dimensional Maccari dynamical system and Schrödinger equation with dual power law nonlinearity. SN Appl. Sci. 1, 1–10 (2019)

    Article  Google Scholar 

  • Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quantum Electron. 54(5), 309 (2022)

    Article  Google Scholar 

  • Arshad, M., Lu, D., Wang, J.: Fractional sub-equation method for a generalized space-time fractional Fisher equation with variable coefficients. Nonlinear Sci. Lett. A 8, 162–170 (2017)

    Google Scholar 

  • Ãzis, T., Agirseven, D.: He’s homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients. Phys. Lett. A 372(38), 5944–5950 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Biswas, A., Milovic, D.: Bright and dark solitons of the generalized nonlinear Schrödingers equation. Commun. Nonlinear Sci. Numer. Simul. 15(6), 1473–1484 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • Daftardar-Gejji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508–518 (2005)

    Article  MathSciNet  Google Scholar 

  • El-Sayed, A.M.A., Gaber, M.: The Adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys. Lett. A 359(3), 175–182 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E.: Adomianâ s decomposition method for solving an intermediate fractional advectionâ dispersion equation. Comput. Math. Appl. 59(5), 1759–1765 (2010)

    Article  MathSciNet  Google Scholar 

  • El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 65, 55–63 (2011)

    Article  MathSciNet  Google Scholar 

  • Eslami, M., Mirzazadeh, M.: Optical solitons with Biswasâ Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83, 731–738 (2016)

    Article  MathSciNet  Google Scholar 

  • Guo, S., Mei, L.: The fractional variational iteration method using He’s polynomials. Phys. Lett. A 375(3), 309–313 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • He, J.H., Li, Z.B.: Converting fractional differential equations into partial differential equations. Therm. Sci. 16(2), 331–334 (2012)

    Article  Google Scholar 

  • Hilfer, R. (Ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

  • Islam, T., Akbar, M.A., Azad, A.K.: Traveling wave solutions to some nonlinear fractional partial differential equations through the rational (G’/G)-expansion method. J. Ocean Eng. Sci. 3(1), 76–81 (2018)

    Article  Google Scholar 

  • Khaleel, M.A.: Multiscale Mathematics Initiative: A Roadmap. US Department of Energy (2004)

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

  • Kudryashov, N.A.: Optical solitons of the resonant nonlinear Schrodinger equation with arbitrary index. Optik 235, 166626 (2021)

    Article  ADS  Google Scholar 

  • Li, Z.B.: An extended fractional complex transform. Int. J. Nonlinear Sci. Numer. Simul. 11(Supplement), 335–338 (2010)

    Article  Google Scholar 

  • Luchko, Y., Gorenflo, R.: The Initial Value Problem for Some Fractional Differential Equations with the Caputo Derivatives (1998)

  • Luchko, Y.F., Srivastava, H.M.: The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 29(8), 73–85 (1995)

    Article  MathSciNet  Google Scholar 

  • Podder, A., Arefin, M.A., Akbar, M.A., Uddin, M.H.: A study of the wave dynamics of the space-time fractional nonlinear evolution equations of beta derivative using the improved Bernoulli sub-equation function approach. Sci. Rep. 13(1), 20478 (2023)

    Article  ADS  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  • Raza, N., Javid, A.: Optical dark and singular solitons to the Biswas Milovic equation in nonlinear optics with spatio-temporal dispersion. Optik 158, 1049–1057 (2018)

    Article  ADS  Google Scholar 

  • Raza, N., Abdullah, M., Butt, A.R.: Analytical soliton solutions of Biswas Milovic equation in Kerr and non-Kerr law media. Optik 157, 993–1002 (2018)

    Article  ADS  Google Scholar 

  • Rehman, H.U., Seadawy, A.R., Younis, M., Yasin, S., Raza, S.T., Althobaiti, S.: Monochromatic optical beam propagation of paraxial dynamical model in Kerr media. Results Phys. 31, 105015 (2021)

    Article  Google Scholar 

  • Rehman, H.U., Inc, M., Asjad, M.I., Habib, A., Munir, Q.: New soliton solutions for the space-time fractional modified third order Korteweg–de Vries equation. J. Ocean Eng. Sci. (2022)

  • Samir, I., Badra, N., Seadawy, A.R., Ahmed, H.M., Arnous, A.H.: Exact wave solutions of the fourth order non-linear partial differential equation of optical fiber pulses by using different methods. Optik 230, 166313 (2021)

    Article  ADS  Google Scholar 

  • Samir, I., Badra, N., Ahmed, H.M., Arnous, A.H.: Solitary wave solutions for generalized Boiti–Leon–Manna–Pempinelli equation by using improved simple equation method. Int. J. Appl. Comput. Math. 8(3), 102 (2022)

    Article  MathSciNet  Google Scholar 

  • Samir, I., Abd-Elmonem, A., Ahmed, H.M.: General solitons for eighth-order dispersive nonlinear Schrödinger equation with ninth-power law nonlinearity using improved modified extended tanh method. Opt. Quantum Electron. 55(5), 470 (2023)

    Article  Google Scholar 

  • Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Inetegrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1998)

    Google Scholar 

  • Singh, J., Rashidi, M.M., Kumar, D., Swroop, R.: A fractional model of a dynamical Brusselator reaction–diffusion system arising in triple collision and enzymatic reactions. Nonlinear Eng. 5(4), 277–285 (2016)

    Article  ADS  Google Scholar 

  • Taghizadeh, N., Mirzazadeh, M., Paghaleh, A.S.: Exact solutions for the nonlinear Schrödinger equation with power law nonlinearity. Math. Sci. Lett. 1(1), 7–16 (2012)

    Article  Google Scholar 

  • Tchier, F., Kilic, B., Inc, M., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., et al.: Optical solitons with resonant nonlinear Schrödinger’s equation using three integration schemes. J. Optoelectron. Adv. Mater. 18(11–12), 66 (2016)

    Google Scholar 

  • Wu, G.C., Baleanu, D.: Variational iteration method for the Burgersâ flow with fractional derivativesâ new Lagrange multipliers. Appl. Math. Model. 37(9), 6183–6190 (2013)

    Article  MathSciNet  Google Scholar 

  • Zaidan, L.I., Darvishi, M.T.: Numerical simulation for fractional nonlinear (1+ 1)-dimensional Biswasâ Milovic equation. Optik 136, 390–402 (2017)

    Article  ADS  Google Scholar 

  • Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Phys. Lett. A 375(10), 1275–1280 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhou, Q., Wei, C., Zhang, H., Lu, J., Yu, H., Yao, P., Zhu, Q.: Exact solutions to the resonant nonlinear Schrodinger equation with both spatio-temporal and inter-modal dispersions. Proc. Roman. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 17(4), 307–313 (2016)

    MathSciNet  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under Grant Number RGP2/222/44.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in preparation, design and study the problem. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nauman Raza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

us Salam, W., Alrajhi, A.H., Fatima, T. et al. New solitary wave solutions of space-time fractional dynamical models. Opt Quant Electron 56, 1028 (2024). https://doi.org/10.1007/s11082-024-06935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06935-1

Keywords

Navigation