Skip to main content
Log in

Dynamical behavior of the fractional generalized nonlinear Schrödinger equation of third-order

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The generalized nonlinear Schrödinger equation with M-truncated derivatives (GNLSE-MTD) is studied here. By using generalized Riccati equation and mapping methods, new elliptic, hyperbolic, trigonometric, and rational solutions are discovered. Because the GNLSE is widely employed in communication, heat pulse propagation in materials, optical fiber communication systems, and nonlinear optical phenomena, the resulting solutions may be used to analyze a wide variety of important physical phenomena. The dynamic behaviors of the various derived solutions are interpreted using 3-D and 2-D graphs to explain the affects of M-truncated derivatives. We can deduce that the surface shifts to the left when the order of M-truncated derivatives decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelrahman, M.A., Alharbi, A., Almatrafi, M.B.: Fundamental solutions for the generalised third-order nonlinear Schrödinger equation. Int. J. Appl. Comput. Math. 6, 1–10 (2020). https://doi.org/10.1007/s40819-020-00906-2

    Article  Google Scholar 

  • Akram, G., Mahak, N.: Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Eur. Phys. J. Plus 133, 212 (2018). https://doi.org/10.1140/epjp/i2018-12061-7

    Article  Google Scholar 

  • Alshammari, M., Hamza, A.E., Cesarano, C., Aly, E.S., Mohammed, W.W.: The analytical solutions to the fractional Kraenkel–Manna–Merle system in ferromagnetic materials. Fractal Fract. 11, 1216451 (2023)

    Google Scholar 

  • Alshammari, S., Mohammed, W.W., Samura, S.K., Faleh, S.: The analytical solutions for the stochastic-fractional Broer–Kaup equations. Math. Probl. Eng. 2022, 6895875 (2022)

    Article  Google Scholar 

  • Baskonus, H.M., Bulut, H., Sulaiman, T.A.: New complex hyperbolic structures to the Lonngren-wave equation by using sine-gordon expansion method. Appl. Math. Nonlinear Sci. 4(1), 129–138 (2019)

    Article  MathSciNet  Google Scholar 

  • Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas. Indian J. Phys. 87, 455–463 (2008)

    Article  ADS  Google Scholar 

  • Bilal, M., Haris, H., Waheed, A., Faheem, M.: The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by compatible techniques. Int. J. Math. Comput. Sci. 1(2), 149–170 (2023)

    Google Scholar 

  • Bilal, M., Hu, W., Ren, J.: Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis. Eur. Phys. J. Plus 136, 385 (2021)

    Article  Google Scholar 

  • Bilal, M., Ren, J.: Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches. Opt. Quant. Electron. 54, 40 (2022). https://doi.org/10.1007/s11082-021-03408-7

    Article  Google Scholar 

  • Bilal, M., Ren, J., Alsubaie, A.S.A., et al.: Dynamics of nonlinear diverse wave propagation to Improved Boussinesq model in weakly dispersive medium of shallow waters or ion acoustic waves using efficient technique. Opt. Quant. Electron. 56, 21 (2024). https://doi.org/10.1007/s11082-023-05587-x

    Article  ADS  Google Scholar 

  • Bilal, M., Ren, J., Inc, M., et al.: Optical soliton and other solutions to the nonlinear dynamical system via two efficient analytical mathematical schemes. Opt. Quant. Electron. 55, 938 (2023). https://doi.org/10.1007/s11082-023-05103-1

    Article  Google Scholar 

  • Bilal, M., Ren, J., Inc, M., et al.: Dynamics of solitons and weakly ion-acoustic wave structures to the nonlinear dynamical model via analytical techniques. Opt. Quant. Electron. 55, 656 (2023). https://doi.org/10.1007/s11082-023-04880-z

    Article  Google Scholar 

  • Bilal, M., Younas, U., Ren, J.: Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics. Opt. Quant. Electron. 53, 522 (2021). https://doi.org/10.1007/s11082-021-03189-z

    Article  Google Scholar 

  • Bulut, H., Pandir, Y., Demiray, S.T.: Exact solutions of nonlinear Schrodinger’s equation with dual power-law nonlinearity by extended trial equation method. Waves Random Complex Media 24, 439 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Caputo, M., Fabrizio, M.: A new definition of fractional differential without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)

    Google Scholar 

  • Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite–Gaussian solitons of a (3 + 1)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dynam. 84(3), 1157–1161 (2016)

    Article  MathSciNet  Google Scholar 

  • Fendzi-Donfack, E., Baduidana, M., Fotsa-Ngaffo, F., Kenfack-Jiotsa, A.: Construction of abundant solitons in a coupled nonlinear pendulum lattice through two discrete distinct techniques. Results Phys. 52, 106783 (2023)

    Article  Google Scholar 

  • Fendzi-Donfack, E., Kenfack-Jiotsa, A.: Extended Fan’s sub-ODE technique and its application to a fractional nonlinear coupled network including multicomponents-LC blocks. Chaos Solitons Fractals 177, 114266 (2023)

    Article  MathSciNet  Google Scholar 

  • Fendzi-Donfack, E., Kumar, D., Tala-Tebue, E., Nana, L., Nguenang, J.P., Kenfack-Jiotsa, A.: Construction of exotical soliton-like for a fractional nonlinear electrical circuit equation using differential-difference Jacobi elliptic functions sub-equation method. Results Phys. 32, 105086 (2022)

    Article  Google Scholar 

  • Fendzi-Donfack, E., Nguenang, J.P., Nana, L.: On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line. Nonlinear Dyn. 104, 691–704 (2021). https://doi.org/10.1007/s11071-021-06300-x

    Article  Google Scholar 

  • Fendzi-Donfack, E., Tala-Tebue, E., Inc, M., et al.: Dynamical behaviours and fractional alphabetical-exotic solitons in a coupled nonlinear electrical transmission lattice including wave obliqueness. Opt. Quant. Electron. 55, 35 (2023). https://doi.org/10.1007/s11082-022-04286-3

    Article  Google Scholar 

  • Fendzi-Donfack, E., Temgoua, G.W.K., Djoufack, Z.I., Kenfack-Jiotsa, A., Nguenang, J.P., Nana, L.: Exotical solitons for an intrinsic fractional circuit using the sine–cosine method. Chaos Solitons Fractals 160, 112253 (2022)

    Article  MathSciNet  Google Scholar 

  • Fitio, V.M., Yaremchuk, I.Y., Romakh, V.V., Bobitski, Y.V.: A solution of one-dimensional stationary Schrödinger equation by the Fourier transform. Comput. Electromagn. Soc. J. 30, 534 (2015)

    Google Scholar 

  • He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–708 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Hilfer, R.: Applications of fractional calculus in physics. World Scientific Publishing, Singapore (2000)

    Book  Google Scholar 

  • Hou, E., Wang, F., Salama, S.A., Khater, M.M.A.: On analytical and numerical simulations for the ultra-short pulses mathematical model in optical fibers. Fractals 30, 2240141 (2022)

    Article  ADS  Google Scholar 

  • Jiong, S.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309, 387–396 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Khan, K., Akbar, M.A.: The \(exp(-\phi (\varsigma ))\)-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 5, 72–83 (2014)

    MathSciNet  Google Scholar 

  • Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. Wiley, New York, NY (1993)

    Google Scholar 

  • Miller, S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York, NY (1993)

    Google Scholar 

  • Mohammed, W.W., Cesarano, C., Elsayed, E.M., Al-Askar, F.M.: The analytical fractional solutions for coupled Fokas system in fiber optics using different methods. Fractal Fract. 7(7), 556 (2023)

    Article  Google Scholar 

  • Oldham, K.B., Spanier, J.: The fractional calculus: theory and applications of differentiation and ntegration to Arbitrary Order. Mathematics in science and engineering, vol. 11. Academic Press, New York, NY (1974)

    Google Scholar 

  • Podlubny, I.: Fractional differential equations. Mathematics in science and engineering, vol. 198. Academic Press, San Diego, Calif (1999)

  • Riesz, M.: L’intégrale de Riemann-Liouville et le probl ème de Cauchy pour l’équation des ondes. Bulletin de la Sociét é Mathématique de France 67, 153–170 (1939)

    Article  Google Scholar 

  • Sousa, J.V., de Oliveira, E.C.: A new truncated Mfractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018)

    Google Scholar 

  • Wang, M.L., Li, X.Z., Zhang, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, K.L., Liu, S.Y.: He’s fractional derivative and its application for fractional Fornberg–Whitham equation. Therm. Sci. 1, 54–54 (2016)

    ADS  Google Scholar 

  • Wazwaz, A.M.: The sine-cosine method for obtaining solutions with compact and noncompact structures. Appl. Math. Comput. 159(2), 559–576 (2004)

    MathSciNet  Google Scholar 

  • Zhang, H.: New application of the \((G^{\prime }/G)\)-expansion method. Commun. Nonlinear Sci. Numer. Simul. 14, 3220–3225 (2009)

    Article  ADS  Google Scholar 

  • Zhu, S.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37, 1335–1342 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Scientific Research Deanship at the University of Ha’il-Saudi Arabia through project number RG-23237.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael W. Mohammed.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.I., Algolam, M.S., Cesarano, C. et al. Dynamical behavior of the fractional generalized nonlinear Schrödinger equation of third-order. Opt Quant Electron 56, 843 (2024). https://doi.org/10.1007/s11082-024-06626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06626-x

Keywords

Mathematics Subject Classification

Navigation