Skip to main content
Log in

Fundamental Solutions for the Generalised Third-Order Nonlinear Schrödinger Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we establish exact solutions for the generalised third-order nonlinear Schrödinger equation. The elliptic function expansion and He’s semi-inverse techniques are employed to establish exact solutions for this equation. These solutions are so important and vital for mathematicians and physicists to prescribe some complex physical phenomena. Using Matlab 18, we plot 2D and 3D graphs of acquired solutions for certain values of the parameters. The proposed techniques are direct, sturdy and efficient tools to solve different types of nonlinear partial differential equations arising in engineering and physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdelrahman, M.A.E., Kunik, M.: The ultra-relativistic Euler equations. Math. Meth. Appl. Sci. 38, 1247–1264 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Abdelrahman, M.A.E.: Global solutions for the ultra-relativistic Euler equations. Nonlinear Anal. 155, 140–162 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Abdelrahman, M.A.E.: On the shallow water equations, Z. Naturforsch., 72(9)a , 873-879 (2017)

  4. Abdelrahman, M.A.E., Sohaly, M.A.: On the new wave solutions to the MCH equation. Indian J. Phys. 93, 903–911 (2019)

    Google Scholar 

  5. Abdelrahman, M.A.E.: Conserved schemes with high pressure ratio, high particle density ratio and self-similar method. Eur. Phys. J. Plus 133, 304 (2018)

    Google Scholar 

  6. Hassan, S.Z., Abdelrahman, M.A.E.: Solitary wave solutions for some nonlinear time fractional partial differential equations. Pramana-J. Phys. 91, 67 (2018)

    Google Scholar 

  7. Abdelrahman, M.A.E., Hassan, S.Z., and Inc, M.: The coupled nonlinear Schrödinger-type equations. Mod. Phys. Lett. B, 2050078. https://doi.org/10.1142/s0217984920500785 (2020)

  8. Razborova, P., Ahmed, B., Biswas, A.: Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity. Appl. Math. Inf. Sci. 8(2), 485–491 (2014)

    MathSciNet  Google Scholar 

  9. Younis, M., Ali, S., Mahmood, S.A.: Solitons for compound KdV Burgers equation with variable coefficients and power law nonlinearity. Nonlinear Dyn. 81, 1191–1196 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Hosseini, K., Kumar, D., Kaplan, M., Bejarbaneh, E.Y.: New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. Commun. Theor. Phys. 68, 761–767 (2017c)

    MathSciNet  MATH  Google Scholar 

  12. Tala-Tebue, E., Djoufack, Z.I., Fendzi-Donfack, E., Kenfack-Jiotsa, A., Kofane, T.C.: Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 127, 11124–11130 (2016)

    Google Scholar 

  13. Hosseini, K., Zabihi, A., Samadani, F., Ansari, R.: New explicit exact solutions of the unstable nonlinear Schrödinger’s equation using the expa and hyperbolic function methods. Opt. Quant. Electron. 50, 82 (2018)

    Google Scholar 

  14. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation Self-focusing and Wave Collapse. Springer, New-York (1999)

    MATH  Google Scholar 

  15. Liu, C.: Exact solutions for the higher-order nonlinear Schrödinger equation in nonlinear optical fibres. Chaos Solit. Fract. 23, 949–955 (2005)

    MATH  Google Scholar 

  16. Mora, C.M., Rebolledo, R.: Basic properties of nonlinear stochastic Schrödinger equations driven by Brownian motions. Ann. Appl. Probab. 18(2), 591–619 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Shrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Abdelrahman, M.A.E., Sohaly, M.A.: Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case. Eur. Phys. J. Plus. 132, 339 (2017)

    Google Scholar 

  19. Hassan, S.Z., Abdelrahman, M.A.E.: A RiccatiBernoulli sub-ODE method for some nonlinear evolution equations. Int. J. Nonlinear Sci. Numer. Simul. 20, 303–313 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Hassan, S.Z., Alyamani, N.A., Abdelrahman, M.A.E.: A construction of new traveling wave solutions for the 2D GinzburgLandau equation. Eur. Phys. J. Plus 134, 425 (2019)

    Google Scholar 

  21. Wazwaz, A.M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. Math. Comput. 154, 714–723 (2004)

    Google Scholar 

  22. Wazwaz, A.M.: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE. method. Comput. Math. Appl. 50, 1685–1696 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Dai, C.Q., Zhang, J.F.: Jacobian elliptic function method for nonlinear differential difference equations. Chaos Solut. Fract. 27, 1042–1049 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Dai, C.Q., Zhang, J.F.: Jacobian elliptic function method for nonlinear differential-difference equations. Chaos Solut. Fract. 27, 1042–1049 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, J.L., Wang, M.L., Wang, Y.M., Fang, Z.D.: The improved F-expansion method and its applications. Phys. Lett. A 350, 103–109 (2006)

    MATH  Google Scholar 

  26. Aminikhad, H., Moosaei, H., Hajipour, M.: Exact solutions for nonlinear partial differential equations via Exp-function method. Numer. Methods Partial Differ. Equ. 26, 1427–1433 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    MATH  Google Scholar 

  29. Abdelrahman, M.A.E., Sohaly, M.A.: The development of the deterministic nonlinear PDEs in particle physics to stochastic case. Results Phys. 9, 344–350 (2018)

    Google Scholar 

  30. Yang, X.F., Deng, Z.C., Wei, Y.: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Diff. Equ. 1, 117–133 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Golam Hafez, Md, Iqbal, S.A., Akther, S., Uddin, M.F.: Oblique plane waves with bifurcation behaviors and chaotic motion for resonant nonlinear Schrödinger equations having fractional temporal evolution. Results Phys. 15, 102778 (2019)

    Google Scholar 

  32. Akther, S., Golam Hafez, Md, Ferdous, F.: Oblique resonance wave phenomena for nonlinear coupled evolution equations with fractional temporal evolution. Eur. Phys. J. Plus 134, 473 (2019)

    Google Scholar 

  33. Akther, S., Golam Hafez, Md, Rezazadeh, H.: Resonance nonlinear wave phenomena with obliqueness and fractional time evolution via the novel auxiliary ordinary differential equation method. SN Appl. Sci. 1, 567 (2019)

    Google Scholar 

  34. Hafez, M.G., Talukder, M.R., Ali, M.H.: New analytical solutions for propagation of small but finite amplitude ion-acoustic waves in a dense plasma. Waves Rand. Complex Media 26(1), 68 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Ferdous, F., Golam Hafez, Md, Biswas, A., Ekici, M., Zhou, Q., Alfiras, M., Moshokoa, S., Belic, M.: Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp(\(-\phi ( )\))-expansion. Optik 178, 439–449 (2019)

    Google Scholar 

  36. Ferdous, F., Golam Hafez, Md: Nonlinear time fractional Korteweg-de Vries equations for interaction of wave phenomena in fluid-filled elastic tubes. Eur. Phys. J. Plus 133, 384 (2018)

    Google Scholar 

  37. Ferdous, F., Golam Hafez, Md: Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems. J. Ocean Eng. Sci. 3, 244–252 (2018)

    Google Scholar 

  38. Alharbi, A.R., Almatrafi, M.B., Abdelrahman, M.A.E.: Analytical and numerical investigation for KadomtsevPetviashvili equation arising in plasma physics. Phys. Scripta 95, 4 (2020)

    Google Scholar 

  39. Alharbi, A.R., Abdelrahman, M.A.E., Almatrafi, M.B.: Analytical and numerical investigation for the DMBBM equation. Comput. Model. Eng. Sci. 122(2), 743–756 (2020)

    Google Scholar 

  40. Abdelrahman, M.A.E., Almatrafi, M.B., Alharbi, A.R.: Fundamental solutions for the coupled KdV system and its stability. Symmetry 12, 429 (2020)

    Google Scholar 

  41. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70, 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Viglialoro, G., Woolley, T.E.: Boundedness in a parabolic-elliptic chemotaxis system with nonlinear diffusion and sensitivity and logistic source. Math. Methods Appl. Sci. 41, 1809–1824 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Pelinovsky, D.E., Yang, J.: Stability analysis of embedded solitons in the generalized third-order nonlinear Schrödinger equation. Chaos 15, 037115 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, X.Q., Zhi, H.Y., Zhang, H.Q.: Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system. Chaos Solit. Fract. 28, 112–126 (2006)

    MathSciNet  MATH  Google Scholar 

  46. Wanga, Q., Chen, Y., Zhang, H.: An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation. Phys. Lett. A 289, 411–426 (2005)

    MATH  Google Scholar 

  47. He, J.H.: Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet Eng. 14(1), 23–28 (1997)

    Google Scholar 

  48. He, J.: Variational principles for some nonlinear partial dikerential equations with variable coencients. Chaos Solit. Fract. 19(4), 847–851 (2004)

    Google Scholar 

  49. He, J.H.: Some asymptotic methods for strongly nonlinear equations. Internat. J. Mod. Phys. B 20, 1141–1199 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Taylor, J.R.: Optical Solitons: Theory and Experiment. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  51. Bloch, V.: Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929)

    MATH  Google Scholar 

  52. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions. Phys. Rev. Lett. 107, 255005 (2011)

    Google Scholar 

  53. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Google Scholar 

  54. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Google Scholar 

  55. Pathak, P., Sharma, S.K., Akamura, Y.N., Bailung, H.: Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions. Phys. Lett. A 381, 4011–4018 (2017)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. E. Abdelrahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, M.A.E., Alharbi, A. & Almatrafi, M.B. Fundamental Solutions for the Generalised Third-Order Nonlinear Schrödinger Equation. Int. J. Appl. Comput. Math 6, 160 (2020). https://doi.org/10.1007/s40819-020-00906-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00906-2

Keywords

Mathematics Subject Classification

Navigation