Skip to main content
Log in

On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on finding soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission lattice. Our investigation is based on the fact that for a realistic system, the electrical characteristics of a capacitor (and an inductor via skin effect) should include a fractional-order time derivative. In this respect for the model under consideration, we derive a fractional nonlinear partial differential equation for the voltage dynamics by applying the Kirchhoff’s laws. It is realized that the behavior of new soliton solutions obtained is influenced by the fractional-order time derivative as well as the coupling values. The fractional order also modifies the propagation velocity of the voltage wave notwithstanding their structure and tends to set up localized structure for low coupling parameter values. However, for a high value of the coupling parameter, the fractional order is less seen on the shapes of the new solitary solutions that are analytically derived. Several methods such as the Kudryashov method, the \((G'/G)\)-expansion method, the Jacobi elliptical functions method and the Weierstrass elliptic function expansion method led us to derive these solitary solutions while using the modified Riemann–Liouville derivatives in addition to the fractional complex transform. An insight into the overall dynamics of our network is provided through the analysis of the phase portraits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mbouna Ngueuteu, G.S., Woafo, P.: Dynamics and synchronization analysis of coupled fractional-order nonlinear electromechanical systems. Mech. Res. Commun. 46, 20 (2012)

    Google Scholar 

  2. Tsobgni-Fozap, D.C., Tala-Tebue, E., Kenfack-Jiotsa, A., Djuidjé-Kenmoé, G., Kofané, T.C.: Small variations of the damping parameters and fractional derivatives on the dynamics of a mass interacting in a nonsinusoidal Remoissenet-Peyrard potential. Int. J. Numer. Methods Appl. 14(1), 31 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27(3), 417 (1967)

    MATH  Google Scholar 

  4. Wang, S.S., Winful, H.G.: Dynamics of phase-locked semiconductor laser arrays. Appl. Phys. Lett. 52(21), 1774 (1988)

    Google Scholar 

  5. Millot, G., Dinda, P.T., Seve, E., Wabnitz, S.: Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers. Opt. Fiber Technol. 7(3), 170 (2001)

    Google Scholar 

  6. Taniuti, T., Washimi, H.: Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys. Rev. Lett. 21(4), 209 (1968)

    Google Scholar 

  7. Matula, R.A.: Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. 8(4), 1147 (1979)

    Google Scholar 

  8. Pelap, F.B., Faye, M.M.: Solitonlike excitations in a one-dimensional electrical transmission line. J. Math. Phys. 46(3), 033502 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Marquié, P., Bilbault, J.M., Remoissenet, M.: Observation of nonlinear localized modes in an electrical lattice. Phys. Rev. E 51(6), 6127 (1995)

    Google Scholar 

  10. Kengne, E., Lakhssassi, A.: Bioheat transfer problem for one-dimensional spherical biological tissues. Math. Biosci. 269, 1 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Kengne, E., Lakhssassi, A.: Propagation of nonlinear waves in bi-inductance nonlinear transmission lines. Eur. Phys. J. B 87(10), 237 (2014)

    MathSciNet  Google Scholar 

  12. Satarić, M.V., Sekulić, D., Zivanov, M.: Solitonic ionic currents along microtubules. J. Comput. Theor. Nanosci. 7(11), 2281 (2010)

    Google Scholar 

  13. Tala-Tebue, E., Kenfack-Jiotsa, A.: Transverse stability in the discrete inductance-capacitance electrical network. J. Mod. Phys. 4(6), 746 (2013)

    Google Scholar 

  14. Tala-Tebue, E., Kenfack-Jiotsa, A., Tatchou-Ntemfack, M.H., Kofané, T.C.: Modulational instability in a pair of non-identical coupled nonlinear electrical transmission lines. Commun. Theor. Phys. 60(1), 93 (2013)

    Google Scholar 

  15. Kenfack-Jiotsa, A., Tala-Tebue, E.: Effect of second-neighbor inductive coupling on the modulational instability in a coupled line of transmission. J. Phys. Soc. Jpn. 80(3), 034003 (2011)

    Google Scholar 

  16. Ertik, H., Calik, A.E., Sirin, H., Sen, M., Öder, B.: Investigation of electrical RC circuit within the framework of fractional calculus. Rev. Mex. Fis. 61, 58–63 (2015)

    MathSciNet  Google Scholar 

  17. Saadatmandi, A., Deghghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724–2733 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Fendzi-Donfack, E., Nguenang, J.P., Nana, L.: Fractional analysis for nonlinear electrical line and nonlinear Schroedinger equations with incomplete sub-equation. Eur. Phys. J. Plus 133, 32 (2018)

    Google Scholar 

  20. Karthikeyan, R., Navid, H., Fatemeh, P., Ibrahim, I.H., Sajad, J., Iqtadar, H.: A fractional-order model for the novel coronavirus (COVID-19) outbreak. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05757-6

    Article  Google Scholar 

  21. Marcin, S., Łukasz, M.: Ferromagnetic core coil hysterisis modeling using frationaal derivatives. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05811-3

    Article  Google Scholar 

  22. Jianqiao, G., Yajun, Y., Xiaolin, H., Gexue, R.: Self-similar network model for fractional-order neuronal spiking: implications of dentritic spine functions. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05519-4

    Article  Google Scholar 

  23. Min, G., Haoyu, D., Jianxin, L., Hongwei, Y.: The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basis function method. Nonlinear Anal. Modell. Control 24(1), 1–19 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Fendzi-Donfack, E., Nguenang, J.P., Nana, L.: On the traveling waves in nonlinear electrical transmission lines with intrinsic fractional-order using discrete tanh method. Chaos Solitons Fractals 131, 109486 (2020)

    MathSciNet  Google Scholar 

  25. Hui, Z., Xiaoyun, J.: A high-efficiency second order numerical scheme for time-fractional phase field models by using extended SAV method. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05943-6

    Article  Google Scholar 

  26. Yupin, W., Shutang, L., Hui, L.: On fractional difference logistic maps: dynamic analysis and synchronous control. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05927-6

    Article  Google Scholar 

  27. Roberto, G., Eva, K.: Stability of fractional-order systems with Prabhakar derivatives. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05897-9

    Article  Google Scholar 

  28. Zhang, Z., Zhang, J.: Asymptotic stabilization of general nonlinear fractional-order systems with multiple time delays. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05866-2

    Article  Google Scholar 

  29. Yingdong, W., Yiheng, W., Yuquan, C., Yong, W.: Mittag-Leffler stability of nabla discrete fractional-order dynamic systems. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05776-3

    Article  Google Scholar 

  30. Xinrui, H., Qi, S., Meng, G., Runmei, L.: Fractional-order adaptive fault-tolerant control for a class of general nonlinear systems. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05768-3

    Article  Google Scholar 

  31. Yang, H.W., Chen, X., Guo, M., Chen, Y.D.: A new ZK-BO equation for three-dimensional algebraic Rossby solitary waves and its solutions as well as fission property. Nonlinear Dyn. 91, 2019–2032 (2018)

    MATH  Google Scholar 

  32. Lawden, D.F.: Elliptic Functions and Applications (Applied Mathematical Sciences ), vol. 80. Springer, New York (1989)

    MATH  Google Scholar 

  33. Dai, C.Q., Wang, Y.Y.: Exact traveling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method. Phys. Scr. 78, 015013 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, S., Wang, D.: A Toda lattice hierachy with variable coefficients and its multi-wave solutions. Therm. Sci. 18(5), 1563–1566 (2014)

    Google Scholar 

  35. Zhang, S., Li, J., Zhou, Y.: Exact solutions of non-linear lattice equations by an improved exp-function method. Entropy 17, 3182 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, S., Wang, J., Peng, A.X., Cai, B.: A generalized exp-function method for multiwave solutions of sine-Gordon equation. Pramana J. Phys. 81(5), 763–773 (2013)

    Google Scholar 

  37. Zhang, S., Zong, Q.A., Gao, Q., Liu, D.: Differential-difference equation arising in nanotechnology and it’s exact solutions. J. Nano Res. 23, 113–116 (2013)

    Google Scholar 

  38. Zhang, S., Gao, Q., Zong, Q.A., Liu, D.: Multi-wave solutions for a non-isospectral KdV-type equation with variable coefficients. Therm. Sci. 16(5), 1476–1479 (2012)

    Google Scholar 

  39. Zhu, S.D., Chu, Y.M., Qiu, S.L.: The homotopy perturbation method for discontinued problems arising in nanotechnology. Comput. Math. Appl. 58, 2398–2401 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, S., Dong, L., Ba, J.M., Sun, Y.N.: The \((G^{\prime }/G)\)-expansion method for nonlinear differential-difference equations. Phys. Lett. A 373, 905–910 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, S.: A generalization of the \((G^{\prime }/G)\)-expansion method and its applications to Jimbo-Miwa equation. Bull. Malays. Math. Sci. Soc. 36, 699–708 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, S., Ba, J..M., Sun, Y..N., Dong, L.: A generalized \((G^{\prime }/G)\)-expansion method for the nonlinear Schrödinger equation with variable coefficients. Z. Naturforsch. 64a(11), 691–696 (2009)

  43. Zhang, S., Dong, L., Ba, J.M., Sun, Y.N.: The \((G^{\prime }/G)\)-expansion method for nonlinear differential-difference equations. Phys. Lett. A 373(10), 905–910 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Wang, Z.: Discrete tanh method for nonlinear difference-differential equations. Comput. Phys. Commun. 180, 1104–1108 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Hirota, R., Suziki, K.: Studies on lattice solitons by using electrical networks. J. Phys. Soc. Jpn. 28, 1366–1367 (1970)

    Google Scholar 

  46. Hirota, R., Suziki, K.: Theoretical and experimental studies of lattice solitons in nonlinear lumped networks. Proc. IEEE 61(10), 1483 (1973)

    Google Scholar 

  47. Gao, F., Liang, G., Liu, X.: A fractional order circuit model of the PT. Adv. Mater. Res. 860–863, 2304–2308 (2014)

    Google Scholar 

  48. Zhang, S., Tong, J.L., Wang, W.: A generalized -expansion method for the mKdV equation with variable coefficients. Phys. Lett. A 372(13), 2254 (2008)

    MATH  Google Scholar 

  49. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192 (1971)

    MATH  Google Scholar 

  50. Assas, L.M.B.: New exact solutions for the Kawahara equation using Exp-function method. J. Comput. Appl. Math. 233(2), 97 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Yersultanova, Z.S., Zhassybayeva, M., Yesmakhanova, K., Nugmanova, G., Myrzakulov, R.: Darboux transformation and exact solutions of the integrable Heisenberg ferromagnetic equation with self-consistent potentials. Int. J. Geom. Methods Mod. Phys. 13(1), 1550134 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Zayed, E.M.E.: A note on the modified simple equation method applied to Sharma-Tasso-Olver equation. Appl. Math. Comput. 218(7), 3962 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Manafian, J., Lakestani, M.: Abundant soliton solutions for the Kundu-Eckhaus equation via \(tan(\varphi (\xi ))\)-expansion method. Optik 127(14), 5543 (2016)

    Google Scholar 

  54. Manafian, J., Lakestani, M.: A new analytical approach to solve some of the fractional-order partial differential equations. Indian J. Phys. 91(3), 243 (2016)

    MATH  Google Scholar 

  55. Khader, M.M., Kumar, S., Abbasbandy, S.: New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology. Chin. Phys. B 22(11), 110201 (2013)

    Google Scholar 

  56. Xu, M.-J., Tian, S.-F., Tu, J.-M., Ma, P.-L., Zhang, T.-T.: Quasi-periodic wave solutions with asymptotic analysis to the Saweda-Kotera-Kadomtsev-Petviashvili equation. Eur. Phys. J. Plus 130(8), 174 (2015)

    Google Scholar 

  57. Ma, P.-L., Tian, S.-F., Tu, J.-M., Xu, M.-J.: On the integrability and quasi-periodic wave solutions of the Boussinesq equation in shallow water. Eur. Phys. J. Plus 130(5), 98 (2015)

    Google Scholar 

  58. Tala-Tebue, E., Tsobgni-Fozap, D.C., Kenfack-Jiotsa, A., Kofané, T.C.: Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative \((G^{\prime }/G)\)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus 129(6), 136 (2014)

    Google Scholar 

  59. Schafer, I., Kruger, K.: Modelling of lossy coils using fractional derivatives. J. Phys. D 41, 1–8 (2008)

    Google Scholar 

  60. Jesus, L.S., Machado, J.A.T.: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56, 45–55 (2009)

    MATH  Google Scholar 

  61. Aslan, I.: Exact solutions for a local fractional DDE associated with a nonlinear transmission line. Commun. Theor. Phys. 66, 315–320 (2016)

    MathSciNet  MATH  Google Scholar 

  62. Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of systems with long-range space interaction and temporal memory. Physica A 383(2), 291–308 (2007)

    Google Scholar 

  63. He, J.H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376, 257–259 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    MathSciNet  MATH  Google Scholar 

  65. Yong, C., Zhenya, Y.: The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos Solitons Fractals 29, 948–964 (2006)

    MathSciNet  MATH  Google Scholar 

  66. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Google Scholar 

  67. Tala-Tebue, E., Djoufack, Z.I., Yamgoué, S.B., Kenfack-Juiotsa, A., Kofané, T.C.: New soliton solutions for a discrete electrical lattice using the Jacobui elliptical function method. Chin. J. Phys. 56, 1010–1020 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful and valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Fendzi-Donfack.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fendzi-Donfack, E., Nguenang, J.P. & Nana, L. On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line. Nonlinear Dyn 104, 691–704 (2021). https://doi.org/10.1007/s11071-021-06300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06300-x

Keywords

Navigation