Skip to main content
Log in

Analysis of single photon detectors in differential phase shift quantum key distribution

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the current research work, an analysis of differential phase shift quantum key distribution using InGaAs/InP and Silicon-APD (avalanche photodiode) as single photon detectors is performed. Various performance parameters of interest such as shifted key rate, secure key rate, and secure communication distance obtained are investigated. In this optical fiber-based differential phase shift quantum key distribution, it is observed that Si-APD under frequency conversion method at telecommunication window outperforms the InGaAs/InP APD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  • Albota, M.A. and Wong, F.N.C.: Efficient single-photon counting at 1.55 \(\mu\)m by means of frequency upconversion

  • Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  • Bennett, CH and B Gilles, Proceedings of the IEEE international conference on computers, systems and signal processing, IEEE New York, 5, pages 3–28, (1984)

  • Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bethune, Donald S., Risk, William P., Pabst, Gary W.: A high-performance integrated single-photon detector for telecom wavelengths. J. Mod. Opt. 51(9–10), 1359–1368 (2004)

    Article  ADS  Google Scholar 

  • Bourennane, M., Karlsson, A., Ciscar, J.P., Mathés, M.: Single-photon counters in the telecom wavelength region of 1550 nm for quantum information processing. J. Mod. Opt. 48(13), 1983–1995 (2001)

    ADS  Google Scholar 

  • Brassard, G., Salvail, L.: Advances in cryptology Eurocrypt’93. Lect. Notes Comput. Sci. 765, 410–423 (1994)

    Article  MathSciNet  Google Scholar 

  • Fasel, Sylvain, Gisin, Nicolas, Ribordy, Grégoire., Zbinden, Hugo: Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: A comparison of two chromatic dispersion reduction methods. Eur. Phys. J. D-Atom., Mol., Opt. Plasma Phys. 30(1), 143–148 (2004)

    Google Scholar 

  • Fasel, S., Alibart, O., Tanzilli, S., Baldi, P., Beveratos, A., Gisin, N., Zbinden, H.: High-quality asynchronous heralded single-photon source at telecom wavelength. New J. Phys. 6(1), 163 (2004)

    Article  ADS  Google Scholar 

  • Gisin, N., Ribordy, G., Zbinden, H., Stucki, D., Brunner, N. and Scarani, V.: Towards practical and fast quantum cryptography, arXiv preprint quant-ph/0411022, 2004

  • Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  • Gobby, C and Yuan, ZL and Shields, AJ, Unconditionally secure quantum key distribution over 50km of standard telecom fibre, arXiv preprint quant-ph/0412173, (2004)

  • Gobby, C.: Yuan, ZL and Shields, AJ,: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    Article  ADS  Google Scholar 

  • Honjo, T., Takesue, H., Kamada, H., Nishida, Y., Tadanaga, O., Asobe, M., Inoue, K.: Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. Opt. Express 15(21), 13957–13964 (2007)

    Article  ADS  Google Scholar 

  • Honjo, T., Inoue, K., Takahashi, H.: Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004)

    Article  ADS  Google Scholar 

  • https://www.idquantique.com/quantum-sensing/products/id100/

  • https://www.aureatechnology.com/images/produits

  • Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89(3), 037902 (2002)

    Article  ADS  Google Scholar 

  • Inoue, K., Honjo, T.: Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack. Phys. Rev. A 71(4), 042305 (2005)

    Article  ADS  Google Scholar 

  • Inoue, K., Waks, E., Yamamoto, Y.: Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68(2), 022317 (2003)

    Article  ADS  Google Scholar 

  • Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000)

    Article  ADS  Google Scholar 

  • Langrock, Carsten and Diamanti, Eleni and Roussev, Rostislav V and Yamamoto, Yoshihisa and Fejer, Martin M and Takesue, Hiroki, Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO waveguides, Optics letters, Optica Publishing Group, 30 (13), pages 1725–1727, (2005)

  • Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  • Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    Article  ADS  Google Scholar 

  • Pelc, J.S., Zhang, Q., Phillips, C.R., Yu, L., Yamamoto, Y., Fejer, M.M.: Cascaded frequency upconversion for high-speed single-photon detection at 1550 nm. Opt. Lett. 37(4), 476–478 (2012)

    Article  ADS  Google Scholar 

  • Raj, Arockia Bazil and Sharma, Vishal and Banerjee, Subhashish, Quantum-based satellite free space optical communication and microwave photonics, Principles and Applications Free Space Optical Communications, IET Telecommunications Series, 78, (2019)

  • Roussev, R.V., Langrock, C., Kurz, J.R., Fejer, M.M.: Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett. 29(13), 1518–1520 (2004)

    Article  ADS  Google Scholar 

  • Sharma, V., Banerjee, S.: Quantum communication using code division multiple access network. Opt. Q. Electron. 52(8), 1–22 (2020)

    Google Scholar 

  • Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: A generalized view. Q. Inf. Process. 14, 3441–3464 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma, Vishal, Thapliyal, Kishore, Pathak, Anirban, Banerjee, Subhashish: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Q. Inf. Process. 15, 4681–4710 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma, V., Shrikant, U., Srikanth, R., Banerjee, S.: Decoherence can help quantum cryptographic security. Q. Inf. Process. 17, 1–16 (2018)

    MathSciNet  MATH  Google Scholar 

  • Sharma, V.: Quantum Communication under noisy environment: From theory to aapplications, Indian Institute of Technology Jodhpur, (2018)

  • Sharma, V. and Banerjee, S.: Analysis of quantum key distribution based satellite communication, In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1-5. IEEE, 2018

  • Sharma, Vishal, Banerjee, Subhashish: Analysis of atmospheric effects on satellite-based quantum communication: A comparative study. Q. Inf. Process. 18(3), 1–24 (2019)

    MATH  Google Scholar 

  • Sharma, Vishal, Sharma, Richa: Analysis of spread spectrum in MATLAB. Int. J. Sci. Eng. Res. 5(1), 1899–1902 (2014)

    Google Scholar 

  • Sharma, V.: Effect of Noise on Practical Quantum Communication Systems. Def. Sci. J. 66(2), 186–192 (2016)

    Article  Google Scholar 

  • Sharma, V., Gupta, S., Mehta, G., Lad, B.K.: A quantum-based diagnostics approach for additive manufacturing machine. IET Collab. Intell. Manuf. 3(2), 184–192 (2021)

    Article  Google Scholar 

  • Sharma, Vishal: Feasibility of temperature sensors in railway coaches. Int. J. Sci. Eng. Res. 5(2), 881–884 (2014)

    Google Scholar 

  • Sharma, V., Panchariya, P.C.: Experimental use of electronic nose for odour detection. Int. J. Eng. Syst. Modell. Simul. 7(4), 238–243 (2015)

    Google Scholar 

  • Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004)

    Article  ADS  Google Scholar 

  • Sharma, V. and Bhardwaj, A.: Analysis of differential phase shift quantum key distribution using single-photon detectors, In 2022 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), IEEE, pages 17–18, (2022)

  • Stucki, D., Ribordy, G., Stefanov, A., Zbinden, H., Rarity, J.G., Wall, T.: Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs. J. Mod. Opt. 48(13), 1967–1981 (2001)

    Article  ADS  Google Scholar 

  • Vandevender, A.P., Kwiat, P.G.: High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51(9–10), 1433–1445 (2004)

    Article  ADS  MATH  Google Scholar 

  • Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  • Waks, E., Zeevi, A., Yamamoto, Y.: Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65(5), 052310 (2002)

    Article  ADS  Google Scholar 

  • Yoshizawa, A., Kaji, R., Tsuchida, H.: 105 km fiber-optic quantum key distribution at 1550 nm with a key rate of 45 kHz. Jpn. J. Appl. Phys. 43(6A), 35 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Author acknowledges Indian Institute of Science, Bangalore for providing the support by the project Centre for Excellence in Quantum Technology (No. 4(7)/2020-ITEA), funded by the Ministry of Electronics and Information Technology, Government of India.

Funding

V.S. would like to acknowledge Indian Institute of Science, Bangalore for providing the support by the project Centre for Excellence in Quantum Technology (No. 4(7)/2020-ITEA), funded by the Ministry of Electronics and Information Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

V.S. has directly participated in the planning, execution, and analysis of this study. V.S. drafted the manuscript. V.S. has read and approved the final version of the manuscript.

Corresponding author

Correspondence to Vishal Sharma.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Ethical Approval

Not Applicable - The manuscript does not contain any human or animal studies.

Consent for publication

Author is accepting to submit and publish the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V. Analysis of single photon detectors in differential phase shift quantum key distribution. Opt Quant Electron 55, 888 (2023). https://doi.org/10.1007/s11082-023-05170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05170-4

Keywords

Navigation