Skip to main content
Log in

FPGA based digital phase-coding quantum key distribution system

  • Article
  • Quantum Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. 1984. 175–179

    Google Scholar 

  2. Vernam G S. Cipher printing telegraph systems for secret wire and radio telegraphic communications. Trans Am Inst Electr Eng, 1926, XLV: 295–301

    Article  Google Scholar 

  3. Zhang C M, Song X T, Treeviriyanupab P, et al. Delayed error verification in quantum key distribution. Chin Sci Bull, 2014, 59: 2825–2828

    Article  Google Scholar 

  4. Wang C Z, Guo H, Ren J G, et al. Experimental validation of dynamic polarization compensation in ground-satellite quantum key distribution. Sci China-Phys Mech Astron, 2014, 57: 1233–1237

    Article  ADS  Google Scholar 

  5. Zhang C X, Guo B H, Cheng G M, et al. Spin-orbit hybrid entanglement quantum key distribution scheme. Sci China-Phys Mech Astron, 2014, 57: 2043–2048

    Article  ADS  Google Scholar 

  6. Su X L. Applying Gaussian quantum discord to quantum key distribution. Chin Sci Bull, 2014, 59: 1083–1090

    Article  Google Scholar 

  7. Chen S J, Liu D K, You L X, et al. Superconducting nanowire single-photon detection system and demonstration in quantum key distribution. Chin Sci Bull, 2013, 58: 1145–1149

    Article  Google Scholar 

  8. Xiao F Y, Chen H W, Xing M J, et al. Construction of punctured and extended quantum codes over GF(2). Sci China Inf Sci, 2013, 56: 032113

    MathSciNet  Google Scholar 

  9. Shi J J, Shi R H, Guo Y, et al. Batch proxy quantum blind signature scheme. Sci China Inf Sci, 2013, 56: 052115

    MathSciNet  Google Scholar 

  10. Chen Y W, Lin Q. Optical quantum router with cross-phase modulation. Sci China Inf Sci, 2014, 57: 122304

    Google Scholar 

  11. Sasaki M, Fujiwara M, Ishizuka H, et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt Express, 2011, 19: 10387–10409

    Article  ADS  Google Scholar 

  12. Clarke P J, Collins R J, Hiskett P A, et al. Robust gigahertz fiber quantum key distribution. Appl Phys Lett, 2011, 98: 131103

    Article  ADS  Google Scholar 

  13. Patel K A, Dynes J F, Choi I, et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys Rev X, 2012, 2: 041010

    Google Scholar 

  14. Wang J, Cui K, Luo C L, et al. Design of a high-repetition rate photon source in a quantum key distribution system. Sci China Inf Sci, 2013, 56: 092305

    Google Scholar 

  15. Jin W, Zheng L M, Wang F Q, et al. The influence of stochastic dispersion on quantum key distribution system. Sci China Inf Sci, 2013, 56: 092304

    Article  Google Scholar 

  16. Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050–2056

    Article  ADS  Google Scholar 

  17. Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441–444

    Article  ADS  Google Scholar 

  18. Dominic M. Unconditional security in quantum cryptography. J ACM, 2001, 48: 351–406

    Article  MathSciNet  Google Scholar 

  19. Dynes J F, Choi I, Sharpe A W, et al. Stability of high bit rate quantum key distribution on installed fiber. Opt Express, 2012, 20: 16339–16347

    Article  ADS  Google Scholar 

  20. Muller A, Herzog T, Huttner B, et al. “Plug and play” systems for quantum cryptography. Appl Phys Lett, 1997, 70: 793–795

    Article  ADS  Google Scholar 

  21. Mo X F, Zhu B, Han Z F, et al. Faraday-Michelson system for quantum cryptography. Opt Lett, 2005, 30: 2632–2634

    Article  ADS  Google Scholar 

  22. Nambu Y, Yoshino K, Tomita A. Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit. J Mod Opt, 2008, 55: 1953–1970

    Article  Google Scholar 

  23. Yang Y. Research on Phase Encoding Quantum Key Distribution System. Dissertation for Doctoral Degree. Hefei: University of Sience and Technology of China, 2012

    Google Scholar 

  24. Lu X M, Wang Y G, Yang Y. A high-speed quantum key distribution system based on Faraday-Michelson interferometers. In: Proceedings of IEEE 7th International Conference on Advanced Infocomm Technology, 2014. 148–154

    Google Scholar 

  25. Lo H K, Ma X F, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  ADS  Google Scholar 

  26. Lundskog A, Hsu C W, Karlsson K F, et al. Direct generation of linearly polarized photon emission with designated orientations from site-controlled InGaN quantum dots. Light-Sci Appl, 2014, 3: e139

    Article  Google Scholar 

  27. Chow WW, Jahnke F, Gies C. Emission properties of nanolasers during the transition to lasing. Light-Sci Appl, 2014, 3: e201

    Article  Google Scholar 

  28. Qi B, Fung C H F, Lo H K, et al. Time-shift attack in practical quantum cryptosystems. arXiv:quant-ph/0512080

  29. Pearson D. High-speed QKD reconciliation using forward error correction. AIP Conf Proc, 2004, 734: 299–302

    Article  ADS  Google Scholar 

  30. Martinez-Mateo J, Elkouss D, Martin V. Key reconciliation for high performance quantum key distribution. Sci Rep, 2013, 3: 1576

    Article  ADS  Google Scholar 

  31. Zhang C M, Li M, Huang J Z, et al. Fast implementation of lengthadaptive privacy amplification in quantum key distribution. Chin Phys B, 2014, 23: 90310

    Article  Google Scholar 

  32. Lucamarini M, Patel K A, Dynes J F, et al. Efficient decoy-state quantum key distribution with quantified security. Opt Express, 2013, 21: 24550–24565

    Article  ADS  Google Scholar 

  33. Zhang L J, Wang Y G, Yin Z Q, et al. Real-time compensation of phase drift for phase-encoded quantum key distribution systems. Chin Sci Bull, 2011, 56: 2305–2311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LiJun Zhang or YongGang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhang, L., Wang, Y. et al. FPGA based digital phase-coding quantum key distribution system. Sci. China Phys. Mech. Astron. 58, 120301 (2015). https://doi.org/10.1007/s11433-015-5742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5742-z

Keywords

Navigation