Skip to main content
Log in

Design and numerical analysis of large negative dispersion and ultra-high nonlinearity \(CS_{2}\) filled LCPCF

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Through filling CS\(_{2}\) into the core, a liquid-core photonic crystal fiber(LCPCF) with a fully circular air hole structure was designed. The finite element method(FEM) and numerical analysis are combined to simulate the structure and optimize the parameters of the fiber. When \(\lambda =1550\) nm ,the geometric optimal parameters are \(\Lambda =0.75\,\upmu\)m, d\(_{1}/\Lambda =0.86\), d\(_{2}/\Lambda =0.96\), and d\(_{3}/\Lambda =0.20\). Meanwhile, the LCPCF can achieve a large negative dispersion of \(-2697.06\) ps/nm/km and a high nonlinearity of 50677.77 W\(^{-1}\)km\(^{-1}\). The numerical aperture and light acceptance are 0.674 and 65.37%, respectively. By comparison, we believe that this LCPCF has obvious advantages in optical communication compensation and supercontinuum generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abdelghani, A.M., Hameed, M.F.O., Abdelrazzak, M., Hindy, MAe.H., Obayya, S. S.: Liquid crystal photonic crystal fibre with high non-linearity and birefringence. IET Optoelectron. 8(6), 210–216 (2014)

    Article  Google Scholar 

  • Anik, M.H.K., Islam, S.R., Biswas, S.K., Isti, M.I.A., Gupta, M.D., Piran, M.J., Kwak, K.-S., Talukder, H.: Numerical design and investigation of circularly segmented air holes-assisted hollow-core terahertz waveguide as optical chemical sensor. IEEE Access 9, 86155–86165 (2021)

    Article  Google Scholar 

  • Biswas, S.K., Arfin, R., Habib, A.B., Amir, S.B., Zahir, Z.B., Islam, M.R., Hussain, M.S.: A modified design of a hexagonal circular photonic crystal fiber with large negative dispersion properties and ultrahigh birefringence for optical broadband communication. In: Photonics, vol. 6, p. 19 ( 2019). MDPI

  • Biswas, S.K., Arfin, R., Zahir, Z.B., Habib, A.B., Khan, R., Islam, M.R., Amir, S.A.B., Alam, A.U.: Ultrahigh negative dispersion compensating hexagonal photonic crystal fiber with large nonlinearity. In: Micro-structured and Specialty Optical Fibres VII, vol. 11773, pp. 191– 198 ( 2021). SPIE

  • Biswas, S.K., Islam, S.R., Islam, M.R., Mia, M.M.A., Sayem, S., Ahmed, F.: Design of an ultrahigh birefringence photonic crystal fiber with large nonlinearity using all circular air holes for a fiber-optic transmission system. In: Photonics, vol. 5, p. 26 ( 2018). MDPI

  • Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: A new class of optical waveguides. Opt. Fiber Technol. 5(3), 305–330 (1999)

    Article  ADS  Google Scholar 

  • Devika, V., Rajan, M., Sharma, M.: Diamond core pet-pcf for supercontinuum generation using meager power with very low birefringence. Opt. Quant. Electron. 54(12), 1–15 (2022)

    Article  Google Scholar 

  • Faruk, M., Khan, N.T., Biswas, S.K., et al.: Highly nonlinear bored core hexagonal photonic crystal fiber (bc-hpcf) with ultra-high negative dispersion for fiber optic transmission system. Front. Optoelectron. 13(4), 433–440 (2020)

    Article  Google Scholar 

  • Ghosh, A.N., Klimczak, M., Buczynski, R., Dudley, J.M., Sylvestre, T.: Supercontinuum generation in heavy-metal oxide glass based suspended-core photonic crystal fibers. JOSA B 35(9), 2311–2316 (2018)

    Article  ADS  Google Scholar 

  • Gong, H., Chan, C.C., Chen, L., Dong, X.: Curvature sensor based on low-birefringence photonic crystal fiber sagnac loop. In: 2010 Photonics Global Conference, pp. 1– 2 ( 2010). IEEE

  • Hassan, M.M., Ahmed, K., Paul, B.K., Hossain, M.N., Al Zahrani, F.A.: Anomalous birefringence and nonlinearity enhancement of as2s3 and as2s5 filled d-shape fiber for optical communication. Phys. Scr. 96(11), 115501 (2021)

    Article  ADS  Google Scholar 

  • Islam, M.I., Ahmed, K., Sen, S., Paul, B.K., Islam, M.S., Chowdhury, S., Hasan, M.R., Uddin, M.S., Asaduzzaman, S., Bahar, A.N.: Proposed square lattice photonic crystal fiber for extremely high nonlinearity, birefringence and ultra-high negative dispersion compensation. J. Opt. Commun. 40(4), 401–410 (2019)

    Article  Google Scholar 

  • Isti, M.I.A., Anik, M.H.K., Nuzhat, S., Talukder, R.C., Sultana, S., Biswas, S.K., Talukder, H.: Highly sensitive double d-shaped channel photonic crystal fiber based plasmonic refractive index sensor. Optics Continuum 1(3), 575–590 (2022)

    Article  Google Scholar 

  • Kabir, M., Hassan, M., Ahmed, K., Rajan, M., Aly, A.H., Hossain, M., Paul, B.K., et al.: Novel spider web photonic crystal fiber for robust mode transmission applications with supporting orbital angular momentum transmission property. Opt. Quant. Electron. 52(7), 1–17 (2020)

    Article  Google Scholar 

  • Kaijage, S.F., Namihira, Y., Hai, N.H., Begum, F., Razzak, S.A., Kinjo, T., Miyagi, K., Zou, N.: Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Jpn. J. Appl. Phys. 48(5R), 052401 (2009)

    Article  ADS  Google Scholar 

  • Kapron, F., Keck, D.B., Maurer, R.D.: Radiation losses in glass optical waveguides. Appl. Phys. Lett. 17(10), 423–425 (1970)

    Article  ADS  Google Scholar 

  • Kedenburg, S., Vieweg, M., Gissibl, T., Giessen, H.: Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Exp. 2(11), 1588–1611 (2012)

    Article  ADS  Google Scholar 

  • Liu, H., Wang, Q., Wang, Y., Tan, C., Zhu, C., Ding, Y., Cheng, D.: Simultaneous measurement of refractive-index and temperature with high sensitivity by combined use of long-period grating and defect cavity in photonic crystal fibers. Opt. Quant. Electron. 49(10), 1–11 (2017)

    Article  Google Scholar 

  • Nuzhat, S., Bin Hassan, M., Sultana, S., Biswas, S.K., Talukder, H., et al.: Hybrid lattice shaped dual polarized highly sensitive surface plasmon resonance based refractive index sensor. Opt. Quant. Electron. 54(5), 1–27 (2022)

    Article  Google Scholar 

  • Paul, B.K., Ahmed, K., Rahman, S.M., Shanthi, M., Vigneswaran, D., Zakaria, R.: Numerical analysis of a highly nonlinear microstructured optical fiber with air-holes arranged in spirals. Opt. Fiber Technol. 51, 90–95 (2019)

    Article  ADS  Google Scholar 

  • Paul, B.K., Ahmed, K., Aktar, M., et al.: Carbon disulphide (cs2) enriched photonic crystal fiber for nonlinear application: a fem scheme. Opt. Quant. Electron. 52(5), 1–13 (2020)

    Article  Google Scholar 

  • Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E.: Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11(8), 843–852 (2003)

    Article  ADS  Google Scholar 

  • Singh, S., Upadhyay, A., Sharma, D., Taya, S.A.: A comprehensive study of large negative dispersion and highly nonlinear perforated core pcf: theoretical insight. Phys. Scr. 97(6), 065504 (2022)

    Article  ADS  Google Scholar 

  • Talukder, H., Isti, M., Nuzhat, S., Biswas, S.K.: Ultra-high negative dispersion based single mode highly nonlinear bored core photonic crystal fiber (hnl-bcpcf): design and numerical analysis. Braz. J. Phys. 50(3), 263–271 (2020)

    Article  ADS  Google Scholar 

  • Tan, C.: Determination of refractive index of silica glass for infrared wavelengths by ir spectroscopy. J. Non-Cryst. Solids 223(1–2), 158–163 (1998)

    Article  ADS  Google Scholar 

  • Upadhyay, A., Singh, S., Prajapati, Y., Tripathi, R.: Numerical analysis of large negative dispersion and highly birefringent photonic crystal fiber. Optik 218, 164997 (2020)

    Article  ADS  Google Scholar 

  • Wahle, M., Kitzerow, H.: Measurement of group velocity dispersion in a solid-core photonic crystal fiber filled with a nematic liquid crystal. Opt. Lett. 39(16), 4816–4819 (2014)

    Article  ADS  Google Scholar 

  • Xu, F., Yuan, J., Mei, C., Yan, B., Zhou, X., Wu, Q., Wang, K., Sang, X., Yu, C., Farrell, G.: Highly coherent supercontinuum generation in a polarization-maintaining cs 2-core photonic crystal fiber. Appl. Opt. 58(6), 1386–1392 (2019)

    Article  ADS  Google Scholar 

  • Zhang, R., Teipel, J., Giessen, H.: Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt. Express 14(15), 6800–6812 (2006)

    Article  ADS  Google Scholar 

Download references

Funding

The authors would like to thank the support provided to this work by the National Key Research and Development Program of China, Project 2019YFB1705803 and Six Talent Peaks Project in Jiangsu Province, Project GDZB-042.

Author information

Authors and Affiliations

Authors

Contributions

Yongkang Feng simulated photonic crystal fibers with finite element software and co-authored the main manuscript text with Jiang. Hongzhi Xu mainly synthesized and analyzed this study data.Chun Feng prepared grammatical changes to Figs. 1, 2 and 3 and the corresponding text in the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shubo Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Indeed, there are no ethical aspects involved in this project at this time. No ethical approval of the program is required from the structural committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- & Nanotechnologies, Guest edited by Vadim Veiko, Tigran Vartanyan, Andrey Belikov and Eugene Avrutin

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Feng, C., Xu, H. et al. Design and numerical analysis of large negative dispersion and ultra-high nonlinearity \(CS_{2}\) filled LCPCF. Opt Quant Electron 55, 339 (2023). https://doi.org/10.1007/s11082-023-04574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04574-6

Keywords

Navigation