Skip to main content
Log in

Design and analysis of hexagonal astroid-like shaped core photonic crystal fiber for highly non-linear applications

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Using the Finite Element Method, a hexagonal photonic crystal fiber(H-PCF) is designed with an astroid-like shaped \(A{s}_{2}{S}_{3}\) chalcogenide glass core and Schott N-BK7 glass background material. The Sellmeier equation represents the refractive indices of both core and background materials to consider the refractive index's wavelength dependence. COMSOL Multiphysics 6.0 simulates the optical properties of the designed PCF by carrying out a parametric wavelength sweep from 0.8 µm to 1.4 µm for three different core sizes. Various characteristics of PCF, such as effective mode index, birefringence, effective mode area, confinement loss, non-linear coefficient, dispersion parameter, and group velocity dispersion (GVD), have been analyzed. Among the three fiber designs, H-PCF has the highest non-linear coefficient of 40.052\({W}^{-1}{m}^{-1}\) at a wavelength of 0.8 μm and a shallow confinement loss of \(5.6\times {10}^{-10}\) dB/m at a wavelength of 1.06 μm. The low confinement loss value and the smaller effective area indicate the designed fiber's strong light guidance effect. The dispersion parameter value of the designed fiber of three different core sizes was from -2052.61(ps/km-nm) to 803.32(ps/km-nm) at wavelengths of 0.8 μm and 1.4 μm, respectively. These properties of designed H-PCF make it suitable for highly non-linear applications like second harmonic generation, four-wave mixing, supercontinuum generation, soliton propagation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during the present study are presented in this published article.

Code availability

Authors have used licensed COMSOL MULTIPHYSICS 6.0 software provided by the I-STEM portal for designing and performing photonic crystal fiber mode analysis.

References

  1. L. Zhang, K. Zhang, J. Peng, J. Deng, Y. Yang, J. Ma, Circular photonic crystal fiber supporting 110 OAM modes. Optics Communications 429, 189 (2018)

    Article  ADS  Google Scholar 

  2. A. Yin, L. Xiong, Characteristics analysis of large solid-core square-lattice photonic crystal fibers with hybrid cladding. OE 53, 016112 (2014)

    Article  Google Scholar 

  3. R. Mamtaz, K. Ahmed, B.K. Paul, M.A. Mollah, M.N. Aktar, M.S. Uddin, V. Dhasarathan, Design and FEM analysis of pentagonal photonic crystal fiber for highly non-linear applications. Opt Quant Electron 52, 455 (2020)

    Article  Google Scholar 

  4. S.K. Biswas, S.M.R. Islam, M.R. Islam, M.M.A. Mia, S. Sayem, F. Ahmed, Design of an Ultrahigh Birefringence Photonic Crystal Fiber with Large Nonlinearity Using All Circular Air Holes for a Fiber-Optic Transmission System. Photonics 5, 26 (2018)

    Article  Google Scholar 

  5. A. Singh Yadav, A. Singh, V. S. Chaudhary, D. Kumar, Ultra-Flat Dispersion with High Nonlinearity Hexagonal Photonic Crystal Fiber, in 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 1–3 (2018). https://doi.org/10.1109/UPCON.2018.8597148

  6. T. Sk, A. Jsn, Nonlinear Rectangular Photonic Crystal Fiber (PCF) for Optical Communication Exclusively Super Continuum Generation. J Laser Opt Photonics 02, 1 (2015)

    Article  Google Scholar 

  7. S. Revathi, S. Inabathini, R. Sandeep, Soft glass spiral photonic crystal fiber for large nonlinearity and high birefringence. Opt Appl 45(1), 15–24 (2015).  https://doi.org/10.5277/OA150102

  8. V.S. Chaudhary, D. Kumar, S. Sharma, Design of High Birefringence with Two Zero Dispersion Wavelength and Highly Nonlinear Hybrid Photonic Crystal Fiber, in Optical and Wireless Technologies, ed. by V. Janyani, G. Singh, M. Tiwari, A. d’Alessandro (Springer, Singapore, 2020), pp.301–306

    Chapter  Google Scholar 

  9. S. Luke, S.K. Sudheer, V.P.M. Pillai, Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss. Optik 127, 11138 (2016)

    Article  ADS  Google Scholar 

  10. I.S. Amiri, Md.A. Khalek, S. Chakma, B.K. Paul, K. Ahmed, V. Dhasarathan, M.S. Mani Rajan, Design of Ge20Sb15Se65 embedded rectangular slotted quasi photonic crystal fiber for higher nonlinearity applications. Optik 184, 63 (2019)

    Article  ADS  Google Scholar 

  11. A. Upadhyay, S. Singh, D. Sharma, S.A. Taya, An ultra-high birefringent and nonlinear decahedron photonic crystal fiber employing molybdenum disulphide (MoS2): A numerical analysis. Mater. Sci. Eng., B 270, 115236 (2021)

    Article  Google Scholar 

  12. Arsenic Trisulfide (As2S3) Semiconductors. (AZoM,2013), https://www.azom.com/article.aspx?ArticleID=8438. Accessed 29 Mar 2024

  13. Schott N-BK7 Glass. https://www.matweb.com/search/datasheet.aspx?matguid=a8c2d05c7a6244399bbc2e15c0438cb9&n=1. Accessed 29 Mar 2024

  14. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T.N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.T. Sangleboeuf, Casting method for producing low-loss chalcogenide microstructured optical fibers. Opt Express OE 18, 9107 (2010)

    Article  ADS  Google Scholar 

  15. Y. Wu, M. Meneghetti, J. Troles, J.-L. Adam, Chalcogenide Microstructured Optical Fibers for Mid-Infrared Supercontinuum Generation: Interest, Fabrication, and Applications. Appl. Sci. 8, 1637 (2018)

    Article  Google Scholar 

  16. C.M.B. Cordeiro, A.K.L. Ng, H. Ebendorff-Heidepriem, Ultra-simplified Single-Step Fabrication of Microstructured Optical Fiber. Sci. Rep. 10, 9678 (2020)

    Article  ADS  Google Scholar 

  17. K.R. Rani, K. Chitra, Design and analysis of low loss solid-core hexagonal photonic crystal fiber for applications in terahertz regime. J Phys Conf Ser. 2426, 012019 (2023)

    Article  Google Scholar 

  18. H. Chen, S. Chen, J. Hou, Q. Lu, Photonic crystal fiber with W-type effective refractive index profile. Optik 124, 2309 (2013)

    Article  ADS  Google Scholar 

  19. W.S. Rodney, I.H. Malitson, T.A. King, Refractive Index of Arsenic Trisulfide. J. Opt. Soc. Am. 48, 633 (1958)

    Article  ADS  Google Scholar 

  20. Refractive index of BK7 - SCHOTT. https://refractiveindex.info/?shelf=glass&book=BK7&page=SCHOTT. Accessed 19 Dec 2023

  21. S. Matloub, R. Ejlali, A. Rostami, Highly Nonlinear and Near-Zero Ultra-Flattened Dispersion Dodecagonal Photonic Crystal Fibers. PIER C 60, 115 (2015)

    Article  Google Scholar 

  22. M.T. Anas, S. Asaduzzaman, K. Ahmed, T. Bhuiyan, Investigation of highly birefringent and highly nonlinear Hexa Sectored PCF with low confinement loss. Result Phys 11, 1039 (2018)

    Article  ADS  Google Scholar 

  23. Y. Lei, X. Xu, N. Wang, H. Jia, Numerical analysis of a photonic crystal fiber for supporting 76 orbital angular momentum modes. J. Opt. 20, 105701 (2018)

    Article  ADS  Google Scholar 

  24. G. P. Agrawal, in Nonlinear Fiber Optics (Sixth Edition), ed. by G. P. Agrawal (Academic Press, 2019), p. 8. https://doi.org/10.1016/B978-0-12-817042-7.00008-7 

  25. F. Begum, Y. Namihira, T. Kinjo, S. Kaijage, Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis. Optics Communications 284, 965 (2011)

    Article  ADS  Google Scholar 

  26. S. Kabir, S.M.A. Razzak, An enhanced effective mode area fluorine doped octagonal photonic crystal fiber with extremely low loss. Photonics Nanostruct. Fundam. Appl. 30, 1 (2018)

    Article  ADS  Google Scholar 

  27. T. Hatakeyama, Nonlinear Silicon Photonics: Phase-Matching and Dispersion Engineering. UC Berkeley (2017). https://escholarship.org/uc/item/3mb1d4zd. Accessed 20 Dec 2023

  28. P. Jamatia, T.S. Saini, A. Kumar, R.K. Sinha, Design and analysis of a highly nonlinear composite photonic crystal fiber for supercontinuum generation: visible to mid-infrared. Appl Opt AO 55, 6775 (2016)

    Article  ADS  Google Scholar 

  29. Md.Z. Alam, M.I. Tahmid, S.T. Mouna, Md.A. Islam, M.S. Alam, Design of a novel star type photonic crystal fiber for mid-infrared supercontinuum generation. Optics Communications 500, 127322 (2021)

    Article  Google Scholar 

  30. E. W. Weisstein, Astroid. https://mathworld.wolfram.com/. Accessed 1 Apr 2024

  31. B.L. Behera, A. Maity, S.K. Varshney, R. Datta, Theoretical investigations of trench-assisted large mode-area, low bend loss and single-mode microstructured core fibers. Opt. Commun. 307, 9 (2013)

    Article  ADS  Google Scholar 

  32. S.K. Pandey, S. Singh, Y.K. Prajapati, A novel PCF design with an ultra-flattened dispersion and low confinement loss by varying tiny air-hole concentration at core and cladding. Opt. Rev. 28, 304 (2021)

    Article  Google Scholar 

  33. T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, M.J. Steel, Confinement losses in microstructured optical fibers. Opt. Lett. OL. 26, 1660 (2001)

    Article  ADS  Google Scholar 

  34. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, S. Selleri, Leakage properties of photonic crystal fibers. Opt. Express. OE. 10, 1314 (2002)

    Article  ADS  Google Scholar 

  35. I. Guryev, O. Shulika, J.A.A. Lucio, R.I.M. Chavez, Field propagation study in ultra-small core photonic crystal fiber beyond the fundamental mode cut-off. Revista Mexicana de Física 68, 021302 (2022)

    Article  Google Scholar 

  36. S. Kumar Pandey, Y. Kumar Prajapati, J.B. Maurya, Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss. Result. Opt. 1, 100024 (2020)

    Article  Google Scholar 

  37. B.K. Paul, Md. Abdul Khalek, S. Chakma, K. Ahmed, Chalcogenide embedded quasi photonic crystal fiber for nonlinear optical applications. Ceram. Int. 44, 18955 (2018)

    Article  Google Scholar 

  38. Md.M. Hossain, Md.A. Kabir, Md.M. Hassan, Md.A.R. Parag, Md.N. Hossain, B.K. Paul, M.S. Uddin, K. Ahmed, Proposal of a highly birefringent bow-tie photonic crystal fiber for nonlinear applications, in Cyber Security and Computer Science, ed. by T. Bhuiyan, Md.M. Rahman, Md.A. Ali (Springer International Publishing, Cham, 2020), pp.659–670

    Chapter  Google Scholar 

  39. S. Maheswaran, B.K. Paul, Md.A. Khalek, S. Chakma, K. Ahmed, M.S. Mani Raja, Design of tellurite glass based quasi photonic crystal fiber with high nonlinearity. Optik 181, 185 (2019)

    Article  ADS  Google Scholar 

  40. M.M. Hasan, L.F. Abdulrazak, B.K. Paul, F.A. Al-Zahrani, K. Ahmed, Novel shaped solid-core photonic crystal fiber for the numerical study of nonlinear optical properties. Opt. Quant. Electron. 54, 139 (2022)

    Article  Google Scholar 

  41. S. Revathi, S.R. Inbathini, R.A. Saifudeen, Highly Nonlinear and Birefringent Spiral Photonic Crystal Fiber”. Advances in OptoElectronics. Advances in OptoElectronics 2014, e464391 (2014)

    Google Scholar 

  42. B.K. Paul, K. Ahmed, Si7N3 material filled novel heptagonal photonic crystal fiber for laser applications. Ceram. Int. 45, 1215 (2019)

    Article  Google Scholar 

  43. A. Upadhyay, S. Singh, D. Sharma, S.A. Taya, Analysis of proposed PCF with square air hole for revolutionary high birefringence and nonlinearity. Photonics Nanostruct. Fundam. Appl. 43, 100896 (2021)

    Article  Google Scholar 

  44. J. Wang, Ultra-high birefringence mid-infrared Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with low confinement loss. Phys. Scr. 98, 055521 (2023)

    Article  ADS  Google Scholar 

  45. H. Balani, G. Singh, M. Tiwari, V. Janyani, A.K. Ghunawat, Supercontinuum generation at 155 μm in As2S3 core photonic crystal fiber. Appl. Opt. AO. 57, 3524 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Indian Science Technology and Engineering Facilities Map portal for their support.

Funding

The authors declare they have not received any funding to assist with preparing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by Lalkrishna S and Atul Kumar, who wrote the first draft of the manuscript, and both authors commented on previous versions. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Lalkrishna S.

Ethics declarations

Conflicts of interest

The authors declare that they have no Conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, L., Kumar, A. Design and analysis of hexagonal astroid-like shaped core photonic crystal fiber for highly non-linear applications. J Opt (2024). https://doi.org/10.1007/s12596-024-01837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01837-7

Keywords

Navigation