Skip to main content
Log in

Ultra-High Negative Dispersion Based Single Mode Highly Nonlinear Bored Core Photonic Crystal Fiber (HNL-BCPCF): Design and Numerical Analysis

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, two different models of highly nonlinear bored core photonic crystal fibers (HNL-BCPCF) are presented and compared for attaining an ultra-high negative dispersion coefficient and high nonlinearity. We achieved this dispersion by tailoring a defect into the solid core of the two proposed models and appropriately scaling down the diameter of the neighboring airholes of the core. To investigate the optical transmission properties in the fiber, simulations were carried out employing the finite element method (FEM) having a perfectly matched layer. The simulation results exhibited large negative dispersion coefficients of − 2218 ps/(nm-km) and − 2221 ps/(nm-km) for the two proposed models, respectively, when the wavelength had been tuned to 1550 nm and the corresponding nonlinear coefficients stand out to be 117.6 W−1 km−1 and 118.4 W−1 km−1. The fabrication process had been made much more feasible as the design consists of circular airholes. In our analysis, this geometry of photonic crystal fiber is noticeably more robust for its successful achievement of an ultra-high negative dispersion with high nonlinearity and facilitates optical back propagation applications and dispersion compensation for optical transmission systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Poli, A. Cucinotta., S. Selleri, Photonic crystal fibers: properties and applications, vol 102. (Springer Science & Business Media, 2007). https://doi.org/10.1007/978-1-4020-6326-8

  2. A. Sonne, A. Ouchar, Improving of high birefringence photonic crystal fiber with low confinement loss using small elliptical air holes in the core region. J. Mod. Opt. 62, 588–592 (2015)

    Article  ADS  Google Scholar 

  3. A. Sonne, A. Ouchar, K. Sonne, Improving of high birefringence with negative dispersion using double octagonal lattice photonic crystal fiber. Int. J. Light Electron Opt. 127, 8–10 (2016)

    Article  Google Scholar 

  4. R. Hao, Z. Li, G. Sun, L. Niu, Y. Sun, Analysis on photonic crystal fibers with circular air holes in elliptical configuration. Opt. Fiber Technol. 19, 363–368 (2013)

    Article  ADS  Google Scholar 

  5. J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5, 305–330 (1999)

    Article  ADS  Google Scholar 

  6. B. Zsigri, J. Lægsgaard, A. Bjarklev, A novel photonic crystal fibre design for dispersion compensation. J. Opt. A Pure Appl. Opt. 6(7), 717–720 (2004)

    Article  ADS  Google Scholar 

  7. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11, 843 (2003)

    Article  ADS  Google Scholar 

  8. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)

    Article  ADS  Google Scholar 

  9. V. Grubsky, J. Feinberg, Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber. Opt. Commun. 274, 447–450 (2007)

    Article  ADS  Google Scholar 

  10. S.G. Leon-Saval, T.A. Birks, W.J. Wadsworth, P.J. Russell, Supercontinuum generation in submicron fiber waveguides. Opt. Express 12, 2864–2869 (2004)

    Article  ADS  Google Scholar 

  11. D. Malka, Z. Zalevsky, Multicore photonic crystal fiber based 1_ 8 two-dimensional intensity splitters/couplers. Electromagnetics 33, 413–420 (2013)

    Article  Google Scholar 

  12. D. Malka, Y. Sintov, Z. Zalevsky, Fiber-laser monolithic coherent beam combiner based on multicore photonic crystal fiber. Opt. Eng. 54, 011007 (2013)

    Article  Google Scholar 

  13. T.A. Birks et al., Dispersion compensation using single-material fibers. IEEE Photon. Technol. Lett. 11, 674 (1999)

    Article  ADS  Google Scholar 

  14. L.P. Shen et al., Design and optimization of microstructure fibers for broad-band dispersion compensation. IEEE Photon. Technol. Lett. 15, 540 (2003)

    Article  ADS  Google Scholar 

  15. M. Samiul Habib et al., Relative dispersion slope matched dispersion compensating highly birefringent spiral microstructure optical fibers using defected core. Opt. Eng. 52, 096110 (2013)

    Article  ADS  Google Scholar 

  16. S.F. Kaijage, Y. Namihira, N.H. Hai, F. Begum, S.M.A. Razzak, T. Kinjo, K. Miyagi, N. Zou, Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Jpn. J. Appl. Phys. 48, 0524011–0524018 (2009)

    Article  Google Scholar 

  17. M. Selim Habib, M. Mejbaul Haque, M. Samiul Habib, M.I. Hasan, M. Shaifur Rahman, S.M.A. Razzak, Polarization maintaining holey fibers for residual dispersion compensation over S + C + L wavelength bands. Optik (Stuttg.) 125, 911–915 (2014)

    Article  ADS  Google Scholar 

  18. M. Samiul Habib, K.M. Nasim, M. Selim Habib, M. Imran Hasan, R. Ahmad, Relative dispersion slope matched dispersion compensating highly birefringent spiral microstructure optical fibers using defected core. Opt. Eng. 52, 096110 (2013)

    Article  ADS  Google Scholar 

  19. M. Mejbaul Haque, M. Shaifur Rahman, M. Samiul Habib, S.M.A. Razzak, Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik (Stuttg.) 125, 2608–2611 (2014)

    Article  Google Scholar 

  20. M.I. Islam, K. Ahmed, S. Sen, B.K. Paul, M.S. Islam, S. Chowdhury, M.R. Hasan, M.S. Uddin, S. Asaduzzaman, A. Newaz Bahar, Proposed square lattice photonic crystal fiber for extremely high nonlinearity, birefringence and ultra-high negative dispersion compensation. J. Opt. Commun. 40(4), 401–410 (2019)

  21. M.I. Islam, M. Khatun, K. Ahmed, Ultra-high negative dispersion compensating square lattice based single mode photonic crystal fiber with high nonlinearity, Opt. Rev. 24(2), 147–155 (2017)

  22. S. Sayem, S. Islam, M. Islam, M. Mia, F. Ahmed, S. Biswas, Design of an ultrahigh birefringence photonic crystal fiber with large nonlinearity using all circular air holes for a fiber-optic transmission system. Photonics. 5, 26 (2018)

    Article  Google Scholar 

  23. M.R. Hasan, M.A. Islam, A.A. Rifat, M.I. Hasan, A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J. Mod. Opt. 64(3), 218–225 (2017)

  24. S.K. Biswas, R. Arfin, A.B. Habib, S.B. Amir, Z.B. Zahir, M.R. Islam, M. Hussainet al., A modified design of a hexagonal circular photonic crystal fiber with large negativedispersion properties and ultrahigh birefringence for optical broadband communication. Photonics, vol. 6, no. 1. (Multidisciplinary Digital Publishing Institute, 2019), p. 19

  25. S. Yang et al., Broadband dispersion-compensating photonic crystal fiber. Opt. Lett. 31, 2830 (2006)

    Article  ADS  Google Scholar 

  26. T. Yang, E. Wang, H. Jiang, Z. Hu, K. Xie, High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt. Express 23, 8329–8337 (2015)

    Article  ADS  Google Scholar 

  27. M. Selim Habib et al., Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 19, 461 (2013)

    Article  ADS  Google Scholar 

  28. S. Kunimasa, K. Masanori, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11, 3100–3109 (2003)

    Article  Google Scholar 

  29. Y.E. Monfared, S.A. Mojtahedinia, Highly birefrigent photonic crystal fiber with high negative dispersion for broadband dispersion compensation. Optik Int. J. Light Electron Optics 125(20), 5969–5972 (2014)

    Article  Google Scholar 

  30. M.I. Islam, K. Ahmed, B.K. Paul, S. Chowdhury, S. Sen, M.S. Islam, S. Asaduzzaman, A.N. Bahar, Ultra-high negative dispersion and nonlinearity based single mode photonic crystal fiber: design and analysis. J. Opt. 48(1), 18–25 (2019)

    Article  Google Scholar 

  31. H. Ademgil, S. Haxha, F.A. Malek, Highly nonlinear bending insensitive birefringent photonic crystal fibers. Engineering 2, 608–616 (2010)

    Article  Google Scholar 

  32. J.H. Lee, P.C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T.M. Monro, et al., A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photon. Technol. Lett. 14, 876–878 (2002). https://doi.org/10.1109/LPT.2002.1003123

  33. A. Medjouri, L.M. Simohamed, O. Ziane, A. Boudrioua, Z. Becer, Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: application to supercontinuum generation at 1.55 μm. Photonics Nanostruct. Fundam. Appl. 16, 43–50 (2015)

    Article  ADS  Google Scholar 

  34. J. Shao, S. Kumar, Optical backpropagation for fiber-optic communications using optical phase conjugation at the receiver. Opt. Lett. 37, 3012–3014 (2012)

    Article  ADS  Google Scholar 

  35. S. Kumar, D. Yang, Optical backpropagation for fiber-optic communications using highly nonlinear fibers. Opt. Lett. 36, 1038–1040 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shovasis Kumar Biswas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukder, H., Isti, M.I.A., Nuzhat, S. et al. Ultra-High Negative Dispersion Based Single Mode Highly Nonlinear Bored Core Photonic Crystal Fiber (HNL-BCPCF): Design and Numerical Analysis. Braz J Phys 50, 263–271 (2020). https://doi.org/10.1007/s13538-020-00742-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00742-1

Keywords

Navigation