Skip to main content
Log in

Synchronized wave and modulation instability gain induce by the effects of higher-order dispersions in nonlinear optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This work examines the effects of the higher-order dispersion (HOD) on modulated waves and modulation instability (MI) gain by using the perturbed nonlinear Schrödinger equation having the cubic quintic septic nonlinearity. We use the new generalized auxiliary equation method to underline the behavior of bright, dark soliton as well as the combined optical soliton solutions. Considering the constraint relation on the combined optical soliton solutions, we carry out the W-shaped profile. We observe that the obtained optical soliton solutions can spread without alteration and can preserve their shapes. Moreover, we enhance the obtained analytical results by using the Split-Step Fourier technic which yields points out stable optical solitons. We have obviously highlighted the effects of the HOD by means of the numerical simulation. Owing to the fact that the model has nonlinear and dispersions terms, we have shown how the MI growth rate and the modulation bands can expand under the influence of the HOD terms in normal and anomalous dispersion regimes. It is worth mentioning the appearance of the unstable zones when the value of the higher-order dispersion term increases and additional bands also emerges. Compared these results with some previous works (Kohl in Optik 203:163451, 2020; Yao in Res Phys 30:104825, 2021; Wang in Phys Lett A 372:417–423, 2008; Ismail in Appl Math Comput 209:425–429, 2009; Nestor in Eur Phys J Plus 135:380, 2020), additional bands of the MI have been pointed out while the MI gain spectra have shown new sides lobes. We expect that these relevant and concise results could probably help to improve the communication system through optic fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable to this work.

References

  • Abbagari, S., et al.: Miscellaneous optical solitons in magneto-optic waveguides associated to the influence of the cross-phase modulation in instability spectra. Phys. Scr. 96(4), 045216 (2021)

    Article  ADS  Google Scholar 

  • Abbagari, S., Houwe, A., Douvagai, D., Doka, S.Y., Kofane, T.C.: M-shape and W-shape bright incite by the fluctuations of the polarization in a-helix protein. Phys. Scr. 96(8), 085501 (2021)

    Article  ADS  Google Scholar 

  • Abbagari, S., Saliou, Y., Houwe, A., Akinyemi, L., Inc, M., Bouetou, T.B.: Modulated wave and modulation instability gain brought by the cross-phase modulation in birefringent fibers having anti-cubic nonlinearity. Phys. Lett. A 442, 128191 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Akinyemi, L., et al.: Nonlinear dispersion in parabolic law medium and its optical solitons. Res. Phys. 26, 104411 (2021)

    Google Scholar 

  • Akinyemi, L., Inc, M., Khater, M., Rezazadeh, H.: Dynamical behaviour of Chiral nonlinear Schrödinger equation. Opt. Quant. Electron. 54(3), 1–15 (2022)

    Article  Google Scholar 

  • Almusawa, H., Jhangeer, A.: A study of the soliton solutions with an intrinsic fractional discrete nonlinear electrical transmission line. Fractal Fract. 6(6), 334 (2022)

    Article  Google Scholar 

  • Aslan, E.C., Inc, M.: Optical soliton solutions of the NLSE with quadratic-cubic-Hamiltonian perturbations and modulation instability analysis. Optik 196, 162661 (2019)

    Article  ADS  Google Scholar 

  • Bhat, I.A., Sivapramkasam, S., Malomed, B.A.: Modulational instability and soliton generation in chiral Bose–Einstein condensates with zero-energy nonlinearity. Phys. Rev. E 103, 032206 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M.: On the solitary wave solutions to the longitudinal wave equation in MEE circular rod. Opt. Quant. Electron. 50(2), 87 (2018)

    Article  Google Scholar 

  • Eslami, M.: Trial solution technique to chiral nonlinear Schrödingers equation in \((1+2)\)-dimensions. Nonlinear Dyn 85(2), 813–816 (2016)

    Article  Google Scholar 

  • Ghanbari, B., Inc, M.: A new generalized exponential rational function method to and exact special solutions for the resonance Schrödinger equation. Eur. Phys. J. Plus 133, 142 (2018)

    Article  Google Scholar 

  • Guner, O., Bekir, A., Korkmaz, A.: Tanh-type and sech-type solitons for some space-time fractional PDE models. Eur. Phys. J. Plus 132(92), 1–12 (2017)

    Google Scholar 

  • Guner, O., Korkmaz, A., Bekir, A.: Dark solutions of space-time fractional Sharma-Tasso-Olver and potential Kadomtsev–Petviashvili Equations. Commun. Theor. Phys. 67(2), 182–188 (2017)

    Article  ADS  MATH  Google Scholar 

  • Houwe, A., et al.: Chirped solitons in discrete electrical transmission line. Res. Phys. 18, 103188 (2020)

    Google Scholar 

  • Houwe, A., et al.: Complex traveling-wave and solitons solutions to the Klein–Gordon–Zakharov equations. Res. Phys. 17, 103127 (2020)

    Google Scholar 

  • Houwe, A., et al.: Survey of third- and fourth-order dispersions including ellipticity angle in birefringent fibers on W-shaped soliton solutions and modulation instability analysis. Eur. Phys. J. Plus 136(4), 357 (2021)

    Article  Google Scholar 

  • Houwe, A., Abbagari, S., Nestor, S., Inc, M., Hashemi, M.S., Betchewe, G., Doka, S.Y.: Optical soliton and weierstrass elliptic function management to parabolic law nonlinear directional couplers and modulation instability spectra. Opt. Quant. Electron. 53(8), 417 (2021)

    Article  Google Scholar 

  • Houwe, A., Abbagari, S., Nisar, K.S., Inc, M., Doka, S.Y.: Influence of fractional time order on W-shaped and modulation instability gain in fractional Nonlinear Schrödinger Equation. Res. Phys. 28, 104556 (2021)

    Google Scholar 

  • Houwe, A., Abbagari, S., Almohsen, B., Betchewe, G., Inc, M., Doka, S.Y.: Chirped solitary waves of the perturbed Chen-Lee-Liu equation and modulation instability instability in optical monomode fibres. Opt. Quant. Electron. 53, 286 (2021)

    Article  Google Scholar 

  • Houwe, A., Abbagari, S., Doka, S.Y., Inc, M., Bouetou, T.B.: Clout of fractional time order and magnetic coupling coefficients on the soliton and modulation instability gain in the Heisenberg ferromagnetic spin chain. Chaos Solitons Fractals 151, 111254 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Inan, I.E., Inc, M., Rezazadeh, H., Akinyemi, L.: Optical solitons of \((3+1)\) dimensional and coupled nonlinear Schrodinger equations. Opt. Quant. Electron. 54(4), 1–15 (2022)

    Google Scholar 

  • Inc, M., Baleanu, D.: Optical solitons for the Kundu–Eckhaus equation with time dependent coefficient. Optik 159, 324–332 (2018)

    Article  ADS  Google Scholar 

  • Ismail, A., Turgut, O.: Analytic study on two nonlinear evolution equations by using the \((G^{\prime }/G)\)-expansion method. Appl. Math. Comput. 209, 425–429 (2009)

    MathSciNet  MATH  Google Scholar 

  • Jhangeer, A., Rezazadeh, H., Seadawy, A.: A study of travelling, periodic, quasiperiodic and chaotic structures of perturbed Fokas-Lenells model. Pramana 95(1), 1–11 (2021)

    Article  ADS  Google Scholar 

  • Jhangeer, A., Hussain, A., Junaid-U-Rehman, M., Baleanu, D., Riaz, M.B.: Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation. Chaos, Solitons Fractals 143, 110578 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Jhangeer, A., Almusawa, H., Hussain, Z.: Bifurcation study and pattern formation analysis of a nonlinear dynamical system for chaotic behavior in traveling wave solution. Res. Phys. 37, 1–10 (2022)

    Google Scholar 

  • Kai, C.C., Hai, F.L.: Effect of third-order dispersion on soliton-effect pulse compression. Opt. Lett. 1, 49–51 (1994)

    Google Scholar 

  • Kohl, R.W., et al.: Sequel to highly dispersive optical soliton perturbation with cubic-quintic-septic refractive index by semi-inverse variational principle. Optik 203, 163451 (2020)

    Article  ADS  Google Scholar 

  • Korkmaz, A.: Exact solutions to \((3+1)\) conformable time fractional Jimbo Miwa, Zakharov Kuznetsov and modified Zakharov Kuznetsov equations. Commun. Theor. Phys. 67, 479–482 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kumar, S., Malik, S., Rezazadeh, H., Akinyemi, L.: The integrable Boussinesq equation and it’s breather, lump and soliton solutions. Nonlinear Dyn. 107(3), 2703–2716 (2022)

    Article  Google Scholar 

  • Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 13 (1980)

    Article  Google Scholar 

  • Nestor, S., Betchewe, G., Inc, M., Doka, S.Y.: Exact traveling wave solutions to the higher-order nonlinear Schrödinger equation having Kerr nonlinearity form using two strategic integrations. Eur. Phys. J. Plus. 135, 380 (2020)

    Article  Google Scholar 

  • Parmar, G.S., Malomed, B.A., Jana, S.: Interplay of multiphoton absorption, Raman scattering, and third-order dispersion in soliton fiber lasers. J. Opt. Soc. Am. B-Opt. Phys. 38, 342–352 (2021)

    Article  ADS  Google Scholar 

  • Rao, J.G., Malomed, B.A., Cheng, Y., He, J.S.: Dynamics of interaction between lumps and solitons in the Mel’nikov equation. Commun. Nonlinear Sci. Numer. Sim. 91, 105429 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Riaz, M.B., Jhangeer, A., Atangana, A., Awrejcewicz, J., Munawar, M.: Supernonlinear wave, associated analytical solitons, and sensitivity analysis in a two-component Maxwellian plasma. J. King Saud University-Sci. 34(5), 102108 (2022)

    Article  Google Scholar 

  • Riaz, M.B., Awrejcewicz, J., Jhangeer, A., Munawar, M.: Appraisal of analytical solutions for \((2+1)\)-dimensional nonlinear Chiral Schrödinger equation. Fractals 30(5), 1–18 (2022)

    MATH  Google Scholar 

  • Samina, S., Jhangeer, A., Chen, Z.: A study of phase portraits, multistability and velocity profile of magneto-hydrodynamic Jeffery-Hamel flow nanofluid. Chin. J. Phys. (2022)

  • Sarma, A.K.: Modulational instability of coupled nonlinear field equations for pulse propagation in a negative index material embedded into a Kerr medium. J. Opt. Soc. Am. B 28(4), 944–948 (2011)

    Article  ADS  Google Scholar 

  • Savaissou, N., et al.: Diverse chirped optical solitons and new complex traveling waves in nonlinear optical fibers. Commun. Theor. Phys. 72, 065501 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma, V.K., Goyal, A., Raju, T.S., Kumar, C.N., Panigrahi, P.K.: Spatial temporal and spatio-temporal modulational instabilities in a planar dual-core waveguide. Opt. Fiber Technol. 24, 119–126 (2015)

    Article  ADS  Google Scholar 

  • Susanto, H., Malomed, B.A.: Embedded solitons in second-harmonic-generating lattices. Chaos, Solitons Fractals 142, 110534 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M., Li, X., Zhang, J.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, D.S., Zhang, D.J., Yang, J.: Intergrable properties of the general coupled nonlinear Schrödinger equation. J. Math. Phys. 51, 1–17 (2010)

    Article  Google Scholar 

  • Wen, S.C., Fan, D.Y.J.: Spatiotemporal instabilities in nonlinear Kerr media in the presence of arbitrary higher-order dispersions. Opt. Soc. Am. B 19(7), 1653–1659 (2002)

    Article  ADS  Google Scholar 

  • Yao, S.-W., et al.: Dynamics of optical solitons in higher-order Sasa–Satsuma equation. Res. Phys. 30, 104825 (2021)

    Google Scholar 

  • Yusuf, A., Inc, M., Baleanu, D.: Optical solitons with M-truncated and beta derivatives in nonlinear optics. Front. Phys. 7, 126 (2019)

    Article  Google Scholar 

  • Yusuf, A., Inc, M., Bayram, M.: Invariant and simulation analysis to the time fractional AbrahamsTsuneto reaction diffusion system. Phys. Scr. 94(12), 125005 (2019)

    Article  ADS  Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., Akinyemi, L., Rezazadeh, H.: Optical solitons of nonlinear complex Ginzburg-Landau equation via two modified expansion schemes. Opt. Quant. Electron. 54(1), 1–15 (2022)

    Article  Google Scholar 

  • Zakharov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. J. Exp. Theor. Phys. 37, 823–828 (1973)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanre Akinyemi.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbagari, S., Houwe, A., Akinyemi, L. et al. Synchronized wave and modulation instability gain induce by the effects of higher-order dispersions in nonlinear optical fibers. Opt Quant Electron 54, 642 (2022). https://doi.org/10.1007/s11082-022-04014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04014-x

Keywords

Navigation