Skip to main content
Log in

Effects of high dispersion and generalized non-local laws on optical soliton perturbations in magneto-optic waveguides with sextic-power law refractive index

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article investigates the dynamics of optical solitons in a magneto-optic waveguide with the nonlinear perturbed Schrödinger equation. The model incorporates two generalized nonlocal laws, a Kudryashov’s sextic-power law nonlinear structure, and high dispersion up to the sixth-order dispersion. The proposed innovative model ensures that all the obtained solutions are original and have not been reported elsewhere. The impetus for this work is the recognition of the crucial significance of studying nonlinear magneto-optical interactions in optical communication systems. The nonlinear Schrödinger equation and its derivatives play crucial roles in various scientific areas, particularly in the field of nonlinear optics and optical fibers. In order to investigate the new structure of our model, we utilize the \(\left( \frac{Z'}{Z}\right) \)-expansion technique and the enhanced Kudrtashov’s method. The solitons obtained are of several types, including bright, singular, and combinations thereof as well as kink-type solution. The strategies utilized are efficacious and distinctive tools in their methodologies and results. To further elucidate the dynamics of the acquired solitons, we offer a discussion section where we present plots of specific solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Kaur, L., Wazwaz, A.-M.: Optical solitons for perturbed Gerdjikov–Ivanov equation. Optik 174, 447–451 (2018). https://doi.org/10.1016/j.ijleo.2018.08.072

    Article  Google Scholar 

  2. Khuri, S.A., Wazwaz, A.-M.: Optical Solitons and traveling wave solutions to Kudryashov’s equation. Optik 279, 170741 (2023). https://doi.org/10.1016/j.ijleo.2023.170741

    Article  Google Scholar 

  3. Wazwaz, A.-M., Mehanna, M.: Higher-order Sasa–Satsuma equation: bright and dark optical solitons. Optik 243, 167421 (2021). https://doi.org/10.1016/j.ijleo.2021.167421

    Article  Google Scholar 

  4. Wazwaz, A.-M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83(3), 035003 (2011). https://doi.org/10.1088/0031-8949/83/03/035003

    Article  Google Scholar 

  5. Zhou, Q., Liu, S.: Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion. Nonlinear Dyn. 81(1–2), 733–738 (2015). https://doi.org/10.1007/s11071-015-2023-3

    Article  MathSciNet  Google Scholar 

  6. Qiu, Y., Shi, M., Guo, X., Li, J., Wu, J., Zhou, Y., Sun, H., Hang, Y., Li, X., Li, Y.: Sensitivity improvement in the measurement of minor components by spatial confinement in fiber-optic laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B 209, 106800 (2023). https://doi.org/10.1016/j.sab.2023.106800

    Article  Google Scholar 

  7. Sun, L., Liang, T., Sun, X., Li, C., Zhang, C.: Temperature self-compensating and high-sensitivity FBG inclination sensor based on the sliding mass principle. Opt. Fiber Technol. 81, 103539 (2023). https://doi.org/10.1016/j.yofte.2023.103539

    Article  Google Scholar 

  8. Zhu, H., Lu, Y., Cai, L.: Wavelength-shift-free racetrack resonator hybrided with phase change material for photonic in-memory computing. Opt. Express 31(12), 18840–18850 (2023). https://doi.org/10.1364/oe.489525

    Article  Google Scholar 

  9. Gao, J.-Y., Liu, J., Yang, H.-M., Liu, H.-S., Zeng, G., Huang, B.: Anisotropic medium sensing controlled by bound states in the continuum in polarization-independent metasurfaces. Opt. Express 31(26), 44703–44719 (2023). https://doi.org/10.1364/oe.509673

    Article  Google Scholar 

  10. Kai, Y., Chen, S., Zhang, K., Yin, Z.: Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation. Waves in Random and Complex Media, 1–12 (2022). https://doi.org/10.1080/17455030.2022.2044541

  11. Akinyemi, L., Houwe, A., Abbagari, S., Wazwaz, A.-M., Alshehri, H.M., Osman, M.S.: Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber. Optik 288, 171202 (2023). https://doi.org/10.1016/j.ijleo.2023.171202

    Article  Google Scholar 

  12. Mirzazadeh, M., Akbulut, A., Taşcan, F., Akinyemi, L.: A novel integration approach to study the perturbed Biswas–Milovic equation with Kudryashov’s law of refractive index. Optik 252, 168529 (2022). https://doi.org/10.1016/j.ijleo.2021.168529

    Article  Google Scholar 

  13. Wazwaz, A.-M., Alhejaili, W., AL-Ghamdi, A.O., El-Tantawy, S.A.: Bright and dark modulated optical solitons for a (2+1)-dimensional optical Schrödinger system with third-order dispersion and nonlinearity. Optik 274, 170582 (2023). https://doi.org/10.1016/j.ijleo.2023.170582

    Article  Google Scholar 

  14. Yépez-Martínez, H., Pashrashid, A., Gómez-Aguilar, J.F., Akinyemi, L., Rezazadeh, H.: The novel soliton solutions for the conformable perturbed nonlinear Schrödinger equation. Mod. Phys. Lett. B 36(08), 2150597 (2022). https://doi.org/10.1142/s0217984921505977

    Article  Google Scholar 

  15. Kai, Y., Yin, Z.: On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity. Mod. Phys. Lett. B 36(02), 2150543 (2021). https://doi.org/10.1142/s0217984921505436

    Article  Google Scholar 

  16. Kai, Y., Yin, Z.: Linear structure and soliton molecules of Sharma–Tasso–Olver–Burgers equation. Phys. Lett. A 452, 128430 (2022). https://doi.org/10.1016/j.physleta.2022.128430

    Article  MathSciNet  Google Scholar 

  17. Arnous, A.H., Ekici, M., Moshokoa, S.P., Zaka Ullah, M., Biswas, A., Belic, M.: Solitons in nonlinear directional couplers with optical metamaterials by trial function scheme. Acta Phys. Pol. A 132(4), 1399–1410 (2017). https://doi.org/10.12693/APhysPolA.132.1399

  18. Arnous, A.H., Nofal, T.A., Biswas, A., Yıldırım, Y., Asiri, A.: Cubic-quartic optical solitons of the complex Ginzburg–Landau equation: a novel approach. Nonlinear Dyn. 111(21), 20201–20216 (2023). https://doi.org/10.1007/s11071-023-08854-4

    Article  Google Scholar 

  19. Zayed, E.M.E., Alngar, M.E.M., Shohib, R.M.A., Biswas, A., Yıldırım, Y., Asiri, A.: Highly dispersive optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model having multiplicative white noise. Nonlinear Dyn. 111(21), 20237–20256 (2023). https://doi.org/10.1007/s11071-023-08935-4

    Article  Google Scholar 

  20. Inc, M., Ates, E., Tchier, F.: Optical solitons of the coupled nonlinear Schrödinger’s equation with spatiotemporal dispersion. Nonlinear Dyn. 85(2), 1319–1329 (2016). https://doi.org/10.1007/s11071-016-2762-9

    Article  Google Scholar 

  21. Zafar, A., Raheel, M., Hosseini, K., Mirzazadeh, M., Salahshour, S., Park, C., Shin, D.Y.: Diverse approaches to search for solitary wave solutions of the fractional modified Camassa–Holm equation. Results Phys. 31, 104882 (2021). https://doi.org/10.1016/j.rinp.2021.104882

    Article  Google Scholar 

  22. Zafar, A., Ashraf, M., Saboor, A., Bekir, A.: M-fractional soliton solutions of fifth order generalized nonlinear fractional differential equation via \((G^{\prime }/G^2)\)-expansion method. Phys. Scr. 99(2), 025242 (2024). https://doi.org/10.1088/1402-4896/ad1e45

    Article  Google Scholar 

  23. Raheel, M., Zafar, A., Liu, J.-G.: New periodic-wave, periodic-cross-kink wave, three wave and other analytical wave solitons of new (2+1)-dimensional KdV equation. Eur. Phys. J. Plus 139(1) (2024). https://doi.org/10.1140/epjp/s13360-023-04831-3

  24. Wang, M.-Y.: Highly dispersive optical solitons of perturbed nonlinear Schrödinger equation with Kudryashov’s sextic-power law nonlinear. Optik 267, 169631 (2022). https://doi.org/10.1016/j.ijleo.2022.169631

    Article  Google Scholar 

  25. Ji, R., Hang-Yu, R.: Exact solutions to nonlinear Schrödinger equation and higher-order nonlinear Schrödinger equation. Commun. Theor. Phys. 50(3), 575–578 (2008). https://doi.org/10.1088/0253-6102/50/3/07

    Article  MathSciNet  Google Scholar 

  26. Onder, I., Secer, A., Hashemi, M.S., Ozisik, M., Bayram, M.: On solution of Schrödinger–Hirota equation with Kerr law via Lie symmetry reduction. Nonlinear Dyn. 111(20), 19315–19327 (2023). https://doi.org/10.1007/s11071-023-08879-9

    Article  Google Scholar 

  27. Hashemi, M.S., Nucci, M.C., Abbasbandy, S.: Group analysis of the modified generalized Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18(4), 867–877 (2013). https://doi.org/10.1016/j.cnsns.2012.09.004

    Article  MathSciNet  Google Scholar 

  28. Hashemi, M.S., Mirzazadeh, M.: Optical solitons of the perturbed nonlinear Schrödinger equation using Lie symmetry method. Optik 281, 170816 (2023). https://doi.org/10.1016/j.ijleo.2023.170816

    Article  Google Scholar 

  29. Iqbal, I., Rehman, H.U., Mirzazadeh, M., Hashemi, M.S.: Retrieval of optical solitons for nonlinear models with Kudryashov’s quintuple power law and dual-form nonlocal nonlinearity. Opt. Quant. Electron. 55(7), 588 (2023). https://doi.org/10.1007/s11082-023-04866-x

    Article  Google Scholar 

  30. Rehman, H.U., Akber, R., Wazwaz, A.-M., Alshehri, H.M., Osman, M.S.: Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method. Optik 289, 171305 (2023). https://doi.org/10.1016/j.ijleo.2023.171305

    Article  Google Scholar 

  31. Arnous, A.H., Mirzazadeh, M., Hashemi, M.S., Shah, N.A., Chung, J.D.: Three different integration schemes for finding soliton solutions in the (1+1)-dimensional Van der Waals gas system. Results Phys. 55, 107178 (2023). https://doi.org/10.1016/j.rinp.2023.107178

    Article  Google Scholar 

  32. Onder, I., Secer, A., Bayram, M.: Optical soliton solutions of time-fractional coupled nonlinear Schrödinger system via Kudryashov-based methods. Optik 272, 170362 (2023). https://doi.org/10.1016/j.ijleo.2022.170362

    Article  Google Scholar 

  33. Eslami, M., Hosseini, K., Matinfar, M., Mirzazadeh, M., Ilie, M., Gómez-Aguilar, J.F.: A nonlinear Schrödinger equation describing the polarization mode and its chirped optical solitons. Opt. Quant. Electron. 53(6), 314 (2021). https://doi.org/10.1007/s11082-021-02917-9

    Article  Google Scholar 

  34. Rezazadeh, H., Ullah, N., Akinyemi, L., Shah, A., Mirhosseini-Alizamin, S.M., Chu, Y.-M., Ahmad, H.: Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov’s method. Results Phys. 24, 104179 (2021). https://doi.org/10.1016/j.rinp.2021.104179

    Article  Google Scholar 

  35. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in magneto-optic waveguides with spatio-temporal dispersion. Frequenz 68(9–10), 445–451 (2014). https://doi.org/10.1515/freq-2013-0164

    Article  Google Scholar 

  36. Mathanaranjan, T.: Soliton solutions of deformed nonlinear Schrödinger equations using Ansatz method. Int. J. Appl. Comput. Math. 7(4) (2021). https://doi.org/10.1007/s40819-021-01099-y

  37. Han, X.-L., Hashemi, M.S., Samei, M.E., Akgül, A., El Din, S.M.: Analytical treatment on the nonlinear Schrödinger equation with the parabolic law. Results Phys. 49, 106544 (2023). https://doi.org/10.1016/j.rinp.2023.106544

    Article  Google Scholar 

  38. Wang, M., Li, X., Zhang, J.: The \(\left(\frac{G^{\prime }}{G}\right)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008). https://doi.org/10.1016/j.physleta.2007.07.051

    Article  MathSciNet  Google Scholar 

  39. Zayed, E.M.E., Alngar, M.E.M., Shohib, R.M.A.: Optical solitons in magneto-optic waveguides for perturbed NLSE with Kerr law nonlinearity and spatio-temporal dispersion having multiplicative noise via Itô calculus. Optik 276, 170682 (2023). https://doi.org/10.1016/j.ijleo.2023.170682

    Article  Google Scholar 

  40. Mohanty, S.K., Kumar, S., Dev, A.N., Kr, M., Deka, D.V., Churikov, O.V. Kravchenko.: An efficient technique of \(\left(\frac{G^{\prime }}{G}\right)\)-expansion method for modified KdV and Burgers equations with variable coefficients. Results Phys. 37, 105504 (2022). https://doi.org/10.1016/j.rinp.2022.105504

    Article  Google Scholar 

  41. Zayed, E., Shohib, R., Alngar, M., Biswas, A., Yildirim, Y., Dakova, A., Moraru, L., Alshehri, H.: Dispersive optical solitons with Radhakrishnan–Kundu–Lakshmanan equation having multiplicative white noise by enhanced Kudryashov’s method and extended simplest equation. Proc. Bulgar. Acad. Sci. 76(6), 849–862 (2023). https://doi.org/10.7546/crabs.2023.06.04

    Article  MathSciNet  Google Scholar 

  42. Kudryashov, N.A.: The Radhakrishnan–Kundu–Lakshmanan equation with arbitrary refractive index and its exact solutions. Optik 238, 166738 (2021). https://doi.org/10.1016/j.ijleo.2021.166738

    Article  Google Scholar 

  43. Nofal, T.A., Zayed, E.M.E., Alngar, M.E.M., Shohib, R.M.A., Ekici, M.: Highly dispersive optical solitons perturbation having Kudryashov’s arbitrary form with sextic-power law refractive index and generalized non-local laws. Optik 228, 166120 (2021). https://doi.org/10.1016/j.ijleo.2020.166120

    Article  Google Scholar 

  44. Biswas, A.: Solitons in magneto-optic waveguides. Appl. Math. Comput. 153(2), 387–393 (2004). https://doi.org/10.1016/s0096-3003(03)00639-8

    Article  MathSciNet  Google Scholar 

  45. Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F.: Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 22(1), 240 (2005). https://doi.org/10.1364/josab.22.000240

    Article  Google Scholar 

  46. Arnous, A.H.: Optical solitons with Biswas–Milovic equation in magneto-optic waveguide having Kudryashov’s law of refractive index. Optik 247, 167987 (2021). https://doi.org/10.1016/j.ijleo.2021.167987

    Article  Google Scholar 

  47. Shoji, Y., Mizumoto, T.: Waveguide magneto-optical devices for photonics integrated circuits. Opt. Mater. Express 8(8), 2387 (2018). https://doi.org/10.1364/ome.8.002387

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided an equal contribution to this manuscript.

Corresponding author

Correspondence to Ahmed H. Arnous.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, E.M.E., Alurrfi, K.A.E., Arnous, A.H. et al. Effects of high dispersion and generalized non-local laws on optical soliton perturbations in magneto-optic waveguides with sextic-power law refractive index. Nonlinear Dyn 112, 8507–8525 (2024). https://doi.org/10.1007/s11071-024-09518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09518-7

Keywords

Navigation