Skip to main content
Log in

Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This article examines the complex Ginzburg–Landau equation with the beta time derivative and analyze its optical solitons and other solutions in the appearance of a detuning factor in non-linear optics. The kink, bright, W-shaped bright, and dark solitons solution of this model are acquired using the modified Exp-function and Kudryshov methods. The model is examined with quadratic-cubic law, Kerr law, and parabolic laws non-linear fibers. These solitons emerge with restrictive conditions that ensure their existence are also presented. Furthermore, the obtained and precise solutions are graphically displayed, illustrating the impact of non-linearity. The various forms of solutions to the aforementioned nonlinear equation that arises in fluid dynamics and nonlinear processes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdou, M.A., Elhanbaly, A.: Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method. Commun. Nonlinear Sci. Numer. Simul. 12(7), 1229–1241 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  • Agrawal, G.P.: Nonlinear fiber optics. In: Nonlinear Science at the Dawn of the 21st Century, pp. 195–211. Springer, Berlin, Heidelberg (2000)

  • Akbar, M.A., Akinyemi, L., Yao, S.W., Jhangeer, A., Rezazadeh, H., Khater, M.M., Ahmad, H., Inc, M.: Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Res. Phys. 25, 1–10 (2021)

    Google Scholar 

  • Akinyemi, L., Hosseini, K., Salahshour, S.: The bright and singular solitons of (2+1)-dimensional nonlinear Schrödinger equation with spatio-temporal dispersions. Optik 242, 1–10 (2021)

    Google Scholar 

  • Akinyemi, L., Şenol, M., Akpan, U., Oluwasegun, K.: The optical soliton solutions of generalized coupled nonlinear Schrödinger-Korteweg-de Vries equations. Opt. Quant. Elect. 53(7), 1–14 (2021)

    Google Scholar 

  • Akram, G., Sajid, N.: The investigation of exact solutions of Korteweg-de vries equation with dual power law nonlinearity using the \(exp_{a}\) and \(\exp (-\phi (\eta ))\) methods. Inter. J. Comput. Math. 1–12 (2021)

  • Arnous, A.H., Seadawy, A.R., Alqahtani, R.T., Biswas, A.: Optical solitons with complex Ginzburg-Landau equation by modified simple equation method. Optik 144, 475–480 (2017)

    ADS  Google Scholar 

  • Aslan, E.C., Inc, M.: Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis. Waves Random Compl. Media 27(4), 594–601 (2017)

    MathSciNet  ADS  Google Scholar 

  • Atangana, A., Baleanu, D., Alsaedi, A.: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14(1), 145–149 (2016)

    Google Scholar 

  • Az-Zo’bi, E., Akinyemi, L., Alleddawi, A.O.: Construction of optical solitons for conformable generalized model in nonlinear media. Modern Phys. Lett. B 35(24), 1–15 (2021)

  • Atangana, A., Alqahtani, R.T.: Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative. Entropy 18(2), 1–14 (2016)

    Google Scholar 

  • Biswas, A.: Temporal 1-soliton solution of the complex Ginzburg-Landau equation with power law nonlinearity. Prog. Electromag. Res. 96, 1–7 (2009)

    ADS  Google Scholar 

  • Biswas, A., Yildirim, Y., Yasar, E., Triki, H., Alshomrani, A.S., Ullah, M.Z., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with complex Ginzburg-Landau equation using trial solution approach. Optik 160, 44–60 (2018)

    ADS  Google Scholar 

  • Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press (2006)

  • Biswas, A., Konar, S., Zerrad, E.: Soliton-soliton interaction with parabolic law nonlinearity. J. Electromag. Waves Appl. 20(7), 927–939 (2006)

    MathSciNet  Google Scholar 

  • Bekir, A., Guner, O., Bhrawy, A.H., Biswas, A.: Solving nonlinear fractional differential equations using exp-function and \(G^{\prime }/G\)-expansion methods. Rom. J. Phys. 60(3–4), 360–378 (2015)

    Google Scholar 

  • Das, A., Biswas, A., Ekici, M., Zhou, Q., Alshomrani, A.S., Belic, M.R.: Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion. Chinese J. Phys. 61, 255–261 (2019)

    MathSciNet  ADS  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Optik 127(22), 10659–10669 (2016)

    ADS  Google Scholar 

  • Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Zhou, Q., Triki, H., Ullah, M.Z., Moshokoa, S.P., Biswas, A.: Optical solitons in birefringent fibers with Kerr nonlinearity by exp-function method. Optik 131, 964–976 (2017)

    ADS  Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with beta conformable time derivative. Revista mexicana de física 65(5), 503–518 (2019)

    MathSciNet  Google Scholar 

  • Hasegawa, A., Kodama, Y.: Solitons in optical communications (No. 7). Oxford University Press on Demand (1995)

  • Hosseini, K., Bekir, A., Ansari, R.: New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method. Optik 132, 203–209 (2017a)

    ADS  Google Scholar 

  • Hosseini, K., Mayeli, P., Nsari, R.: Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. Optik 130, 737–742 (2017b)

  • Hosseini, K., Mirzazadeh, M., Ilie, M., Gómez-Aguilar, J.F.: Biswas-Arshed equation with the beta time derivative: optical solitons and other solutions. Optik 217, 1–7 (2020a)

    Google Scholar 

  • Hosseini, K., Mirzazadeh, M., Ilie, M., Radmehr, S.: Dynamics of optical solitons in the perturbed Gerdjikov-Ivanov equation. Optik 206, 1–7 (2020b)

    Google Scholar 

  • Inc, M.: New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-Gordon equations. Chaos, Solit. Fract. 33(4), 1275–1284 (2007)

    MathSciNet  MATH  ADS  Google Scholar 

  • Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Optical solitons for complex Ginzburg-Landau model in nonlinear optics. Optik 158, 368–375 (2018)

    ADS  Google Scholar 

  • Inc, M., Ates, E., Tchier, F.: Optical solitons of the coupled nonlinear Schrödinger’s equation with spatiotemporal dispersion. Nonlinear Dyn. 85(2), 1319–1329 (2016a)

  • Inc, M., Kilic, B., Baleanu, D.: Optical soliton solutions of the pulse propagation generalized equation in parabolic-law media with space-modulated coefficients. Optik 127(3), 1056–1058 (2016b)

    ADS  Google Scholar 

  • Kaewta, S., Sirisubtawee, S., Sungnul, S.: Application of the exp-function and generalized Kudryashov methods for obtaining new exact solutions of certain nonlinear conformable time partial integro-differential equations. Computation 9(5), 1–19 (2021)

    Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  • Khater, A.H., Callebaut, D.K., Seadawy, A.R.: General soliton solutions of an n-dimensional complex Ginzburg-Landau equation. Physica Scripta 62(5), 353–357 (2000)

    MathSciNet  ADS  Google Scholar 

  • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204. Elsevier (2006)

  • Kilic, B., Inc, M.: On optical solitons of the resonant Schrödinger’s equation in optical fibers with dual-power law nonlinearity and time-dependent coefficients. Waves Random Compl. Media 25(3), 334–341 (2015)

  • Kilic, B., Inc, M.: Optical solitons for the Schrödinger-Hirota equation with power law nonlinearity by the Bäcklund transformation. Optik 138, 64–67 (2017)

    ADS  Google Scholar 

  • Kilic, B., Inc, M.: The first integral method for the time fractional Kaup-Boussinesq system with time dependent coefficient. Appl. Math. Comput. 254, 70–74 (2015)

    MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 1–7 (2020)

    MATH  Google Scholar 

  • Liu, W., Yu, W., Yang, C., Liu, M., Zhang, Y., Lei, M.: Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers. Nonlinear Dyn. 89(4), 2933–2939 (2017)

    MathSciNet  Google Scholar 

  • Mirzazadeh, M., Ekici, M., Sonmezoglu, A., Eslami, M., Zhou, Q., Kara, A.H., Milovic, D., Majid, F.B., Biswas, A., Belić, M.: Optical solitons with complex Ginzburg-Landau equation. Nonlinear Dyn. 85(3), 1979–2016 (2016)

    MathSciNet  MATH  Google Scholar 

  • Mirzazadeh, M., Akinyemi, L., Şenol, M., Hosseini, K.: A variety of solitons to the sixth-order dispersive (3+1)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-septic nonlinearities. Optik 241, 1–15 (2021)

    Google Scholar 

  • Patra, S., Shit, G.C., Das, B.: Computational model on magnetothermoelastic analysis of a rotating cylinder using finite difference method. Waves Random Compl Media. 1–18 (2020)

  • Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier (1998)

  • Rezazadeh, H., Ullah, N., Akinyemi, L., Shah, A., Mirhosseini-Alizamin, S.M., Chu, Y.M., Ahmad, H.: Optical soliton solutions of the generalized non-autonomous nonlinear Schrödinger equations by the new Kudryashov’s method. Res. Phys. 24, 1–7 (2021)

  • Ryabov, P.N., Sinelshchikov, D.I., Kochanov, M.B.: Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations. Appl. Math. Comput. 218(7), 3965–3972 (2011)

    MathSciNet  MATH  Google Scholar 

  • Shwetanshumala, S.: Temporal solitons of modified complex Ginzberg Landau equation. Prog. Electromag. Res. 3, 17–24 (2008)

    Google Scholar 

  • Sousa, J.V.D.C., de Oliveira, E.C.: A new truncated \(M\)-fractional derivative type unifying some fractional derivative types with classical properties. Inter. J. Analy. Appl. 16(1), 83–96 (2018)

    MATH  Google Scholar 

  • Tchier, F., Aslan, E.C., Inc, M.: Optical solitons in parabolic law medium: Jacobi elliptic function solution. Nonlinear Dyn. 85(4), 2577–2582 (2016)

    MathSciNet  Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves, p. 42. John Wiley & Sons (2011)

  • Yaşar, E., Yıldırım, Y., Zhou, Q., Moshokoa, S.P., Ullah, M.Z., Triki, H., Biswas, A., Belic, M.: Perturbed dark and singular optical solitons in polarization preserving fibers by modified simple equation method. Superlatti. Microstruct. 111, 487–498 (2017)

    ADS  Google Scholar 

  • Yang, X.J.: Advanced local fractional calculus and its applications (2012)

  • Yusuf, A., Inc, M., Aliyu, A.I., Baleanu, D.: Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers. Front. Phys. 7, 1–7 (2019)

    Google Scholar 

  • Zafar, A., Rezazadeh, H., Bekir, A., Malik, A.: Exact solutions of \((3+1)\)-dimensional fractional mKdV equations in conformable form via expansion method. SN Appl. Sci. 1(11), 1–9 (2019)

    Google Scholar 

  • Zayed, E.M., Abdelaziz, M.A.M.: Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine-cosine and the exp-function methods. Appl. Math. Comput. 218(5), 2259–2268 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanre Akinyemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, A., Shakeel, M., Ali, A. et al. Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes. Opt Quant Electron 54, 5 (2022). https://doi.org/10.1007/s11082-021-03393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03393-x

Keywords

Navigation