Skip to main content
Log in

Bi-doped SnO2 transparent conducting thin films deposited by spray pyrolysis: structural, electrical, optical, and photo-thermoelectric properties

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this research, light and heavy Bi-doped SnO2 thin films were prepared on glass substrates by spray pyrolysis technique. The effect of heavy doped-Bi on the structural, morphological, electrical, photo-thermo-electrical, optical properties of SnO2 thin films has been investigated. The Bi/Sn atomic ratios (x = [Bi/Sn]) were varied from 0 to 0.30 in the spray solution. X-ray diffraction analysis showed the formation of SnO2 tetragonal rutile structure in low doped deposited thin films and amorphous structure for heavy Bi-doped SnO2. Also, the SnO2–Bi2O3 binary thin films were formed for x = [Bi/Sn] = 0.05. Scanning electron microscopy images indicated that the nanostructure of the condensed thin films has a rectangular-particle growth toward particle-spherical growth. The Hall effect measurements have shown n-type conductivity in all deposited thin films. The lowest sheet resistance of 39.3 MΩ/□ and highest carrier concentration of n = 4.53 × 1018 cm−3 was obtained for the thin film deposited with x = 0.10. The maximum of the Seebeck coefficient (S) = 325 μVK−1 and figure of merit (ZT) = 1.85 was obtained for the thin film deposited with x = 0.20. The average transmittance of thin films varied over the range of T = 72–84%. The bandgap values of samples were obtained in the range of Eg = 3.52–3.88 eV for the direct band gap. From the photoconductivity studies, the sample prepared with x = 0.20 exhibited the highest photoconductivity among the SnO2: Bi thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afre, R.A., Sharma, N., Sharon, M., Sharon, M.: Transparent conducting oxide films for various applications: a review. Rev. Adv. Mater. Sci. 53, 79–89 (2018)

    Article  Google Scholar 

  • Ahmed, S.F., Khan, S., Ghosh, P.K., Mitra, M.K., Chattopadhyay, K.K.: Effect of Al doping on the conductivity type inversion and electro-optical properties of SnO2 thin films synthesized by sol-gel technique. J. Sol-Gel Sci. Technol. 39, 241–247 (2006)

    Article  Google Scholar 

  • Al-Saadi, T.M., Hussein, B.H., Hasan, A.B., Shehab, A.A.: Study the structural and optical properties of Cr doped SnO2 nanoparticles synthesized by sol-gel method. Energy Procedia 157, 457–465 (2019). https://doi.org/10.1016/j.egypro.2018.11.210

    Article  Google Scholar 

  • An, H.-R., Kim, C., Oh, S.-T., Ahn, H.-J.: Effect of sol-layers on Sb-doped SnO2 thin films as solution-based transparent conductive oxides. Ceram Int 40, 385–391 (2014). https://doi.org/10.1016/j.ceramint.2013.06.013

    Article  Google Scholar 

  • Azimi Juybari, H., Bagheri-Mohagheghi, M.-M., Ketabi, S.A., Shokooh-Saremi, M.: Fabrication and characterization of transparent p–n and p–i–n heterojunctions prepared by spray pyrolysis technique: TEMP effect of post-annealing process and intrinsic middle layer. Phys. E 43, 93–96 (2010)

    Article  Google Scholar 

  • Bagheri-Mohagheghi, M.M., Shokooh-Saremi, M.: Electrical, optical and structural properties of Li-doped SnO2 transparent conducting films deposited by the spray pyrolysis technique: a carrier-type conversion study, Semicond. Sci. Technol. 19, 764–769 (2004). https://doi.org/10.1088/0268-1242/19/6/019

    Article  ADS  Google Scholar 

  • Bagheri-Mohagheghi, M.-M., Shokooh-Saremi, M.: The electrical, optical, structural and thermoelectrical characterization of n-and p-type cobalt-doped SnO2 transparent semiconducting films prepared by spray pyrolysis technique. Phys. B 405, 4205–4210 (2010)

    Article  ADS  Google Scholar 

  • Chang, Sh.P., Chen, W.D., Huang, W.L.: Investigation of MgIn2O4 MSM UV photodetector with different oxygen flow ratios and post-annealing temperatures. ECS J. Solid State Sci. Technol. 10, 055014 (2021). https://doi.org/10.1149/2162-8777/ac0115

    Article  ADS  Google Scholar 

  • Chen, Y., Hou, X., Ma, C., Dou, Y., Wu, W.: Review of development status of Bi2Te3-based semiconductor thermoelectric power generation. Adv. Mater. Sci. Eng. 2018 (2018). https://doi.org/10.1155/2018/1210562

    Article  Google Scholar 

  • Chinnappa, L., Ravichandran, K., Saravanakumar, K., et al.: The combined effects of molar concentration of the precursor solution and fluorine doping on the structural and electrical properties of tin oxide films. J. Mater. Sci. Mater. Electron. 22, 1827–1834 (2011)

    Article  Google Scholar 

  • Chiu, T.W., Tonooka, K., Kikuchi, N.: Fabrication of transparent CuCrO2: Mg/ZnO p-n junctions prepared by pulsed laser deposition on glass substrate. Vacuum 83, 614–616 (2008)

    Article  ADS  Google Scholar 

  • Dawar, A.L., Jain, A.K., Jagadish, C.J., Hartnagel, H.: Semi-conducting Transparent Thin Films. IOP, Bristol (1995)

    Google Scholar 

  • Duinong, M., Chee, F.P., Salleh, S., Alias, A., Mohd Salleh, K.A., Ibrahim, S.: Structural and optical properties of gamma irradiated CuGaO2 thin film deposited by radio frequency (RF) sputtering. J. Phys. Conf. Ser. 1358, 012047 (2019)

    Article  Google Scholar 

  • Filippatos, P.P., Kelaidis, N., Vasilopoulou, M., Davazoglou, D., Chroneos, A.: Impact of boron and indium doping on the structural, electronic and optical properties of SnO2. Sci. Rep. 11, 13031 (2021). https://doi.org/10.1038/s41598-021-92450-2

    Article  ADS  Google Scholar 

  • Fujiwara, K., Minato, H., Shiogai, J., Kumamoto, A., Shibata, N., Tsukazaki, A.: Thin-film stabilization of LiNbO3-type ZnSnO3 and MgSnO3 by molecular-beam epitaxy. APL Mater. 7, 022505 (2019). https://doi.org/10.1063/1.5054289

    Article  ADS  Google Scholar 

  • Gour, K.S., Karade, V., Jang, J.S., Jo, E., Babar, P., Korade, S., Yoo, H., Kim, S., Kim, D., Park, J., Kim, J.H.: Nanoscale rear-interface passivation in Cu2ZnSn(S, Se)4 solar cells through the CuAlO2 intermediate layer. ACS Appl. Energy Mater. 4(5), 5222–5229 (2021). https://doi.org/10.1021/acsaem.1c00743

    Article  Google Scholar 

  • Gupta, S., Yadav, B.C., Dwivedi, P.K., Das, B.: Microstructural, optical and electrical investigations of Sb-SnO2 thin films deposited by spray pyrolysis. Mater. Res. Bull. 48, 3315–3322 (2013). https://doi.org/10.1016/j.materresbull.2013.05.001

    Article  Google Scholar 

  • Hasan Zadeh Maha, M., Bagheri-Mohagheghi, M.-M., Azimi-Juybari, H.: Tin doped β-In2S3 thin films prepared by spray pyrolysis: correlation between structural, electrical, optical, thermoelectric and photoconductive properties. Thin Solid Films 536, 57–62 (2013). https://doi.org/10.1016/j.tsf.2013.03.047

    Article  ADS  Google Scholar 

  • He, H., Yang, Z., Xu, Y., et al.: Perovskite oxides as transparent semiconductors: a review. Nano Converg. 7, 32 (2020). https://doi.org/10.1186/s40580-020-00242-7

    Article  Google Scholar 

  • Indira Gandhi, T., Ramesh Babu, R., Ramamurthi, K.: Structural, morphological, electrical and optical studies of Cr doped SnO2 thin films deposited by the spray pyrolysis technique. Mater. Sci. Semicond. Process. 16, 472–479 (2013)

    Article  Google Scholar 

  • Kumar, A., Sahay, P.P.: Lithium doping in spray-pyrolyzed NiO thin films: results on their microstructural, optical and electrochromic properties. Appl. Phys. A 127, 286 (2021). https://doi.org/10.1007/s00339-021-04436-6

    Article  ADS  Google Scholar 

  • Lan, Y., Minnich, A.J., Chen, G., Ren, Z.: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357–376 (2010)

    Article  Google Scholar 

  • Li, Sh., Pomaska, M., Lambertz, A., Duan, W., et al.: Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. Joule 5(6), 1535–1547 (2021). https://doi.org/10.1016/j.joule.2021.04.004

    Article  Google Scholar 

  • Ma, T., Nikiel, M., Thomas, A.G., et al.: A novel and potentially scalable CVD-based route towards SnO2: Mo thin films as transparent conducting oxides. J. Mater. Sci. 56, 15921–15936 (2021). https://doi.org/10.1007/s10853-021-06269-3

    Article  ADS  Google Scholar 

  • Mokaripoor, E., Bagheri-Mohagheghi, M.M.: Study of structural, electrical and photoconductive properties of F and P co-doped SnO2 transparent semiconducting thin film deposited by spray pyrolysis. Mater. Sci. Semicond. Process. 30, 400–405 (2015)

    Article  Google Scholar 

  • Muruganantham, G., Ravichandran, K., Saravanakumar, K., Ravichandran, A.T., Sakthivel, B.: TEMP effect of solvent volume on the physical properties of undoped and fluorine doped tin oxide films deposited using a low-cost spray technique. Superlattices Microstruct. 50, 722–733 (2011)

    Article  ADS  Google Scholar 

  • Remsen, I.: An Introduction to the Study of Chemistry. Forgotten Books. p. 363. ISBN 978-1-4400-5235-4. Retrieved 21 June 2012

  • Rong, Z., Yang, F., Cai, X., Han, X., Li, G.: Effect of process parameters of microwave activated hot pressing on the microstructure and thermoelectric properties of Bi2Te3-based alloys. J. Alloys Compd. 630, 282–287 (2015)

    Article  Google Scholar 

  • Rubenis, K., Populoh, S., Thiel, P., Yoon, S., Müller, U., Locs, J.: Thermoelectric properties of dense Sb-doped SnO2 ceramics. J. Alloys Compd. 692, 515–521 (2016). https://doi.org/10.1016/j.jallcom.2016.09.062

    Article  Google Scholar 

  • Shet, S., Ahn, K.S., Nuggehalli, R., Yana, Y., Turner, J., Al-Jassim, M.: Phase separation in Ga and N co-incorporated ZnO films and its effects on photo-response in photoelectrochemical water splitting. Thin Solid Films 519(18), 5983–5987 (2011). https://doi.org/10.1016/j.tsf.2011.03.050

    Article  ADS  Google Scholar 

  • Sung, N.E., Shin, H.J., Chae, K.H., Won, S.O., Lee, I.J.: Epitaxial zinc stannate (Zn2SnO4) thin film for solar cells. ACS Appl. Energy Mater. 3(7), 6056–6059 (2020). https://doi.org/10.1021/acsaem.0c00461

    Article  Google Scholar 

  • Tsubota, T., Kobayashi, S., Murakami, N., Ohno, T.: Improvement of thermoelectric performance for Sb-doped SnO2 ceramics material by addition of Cu as sintering additive. J. Electron. Mater. 43, 3567–3573 (2014a). https://doi.org/10.1007/s11664-014-3227-x

    Article  ADS  Google Scholar 

  • Tsubota, T., Kobayashi, S., Murakami, N., Ohno, T.: Improvement of thermoelectric performance for Sb-doped SnO2 ceramics material by addition of Cu as sintering additive. J. Electron. Mater. 43, 3567–3573 (2014b). https://doi.org/10.1007/s11664-014-3227-x

    Article  ADS  Google Scholar 

  • Wang, N., He, H., Ba, Y., Wan, C., Koumoto, K.: Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition. J. Ceram. Soc. Jpn. 118, 1098–1101 (2010)

    Article  Google Scholar 

  • Wang, J., Chen, Q., Zhu, X.C., Lee, S.J., Park, K.W., Jhun, C.Y.: Preparation and thermoelectric properties of Bi doped Ca3Co4O9 based thermoelectric materials. Key Eng. Mater. 783, 144–147 (2018). https://doi.org/10.4028/www.scientific.net/kem.783.144

    Article  Google Scholar 

  • Xueai, Y., Weiwei, F., Xin, Z.: Preparation and photoelectric properties of Zn2SnO4-based composite nanomaterials. Emerg. Mater. Res. 4(3), 991–999 (2020). https://doi.org/10.1680/jemmr.20.00103

    Article  Google Scholar 

  • Yanagawa, K., Ohki, Y., Omata, T., Hosono, H., Ueda, N., Kawazoe, H.: Preparation of Cd1−xYxSb2O6 thin film on glass substrate by radio frequency sputtering. Appl. Phys. Lett. 65, 406–408 (1994). https://doi.org/10.1063/1.112316

    Article  ADS  Google Scholar 

  • Yanagiya, S., Nong, N.V., Xu, J., Sonne, M., Pryds, N.: Thermoelectric properties of SnO2 ceramics doped with Sb and Zn. J. Electron. Mater. 40, 674–677 (2011). https://doi.org/10.1007/s11664-010-1506-8

    Article  ADS  Google Scholar 

  • Yanagiya, S., Nong, N.V., Sonne, M., Pryds, N.: Thermoelectric properties of SnO2-based ceramics doped with Nd, Hf or Bi. In: AIP Conference Proceedings, 2012, pp. 327–330. https://doi.org/10.1063/1.4731563

  • Yang, W., Shihui, Yu., Zhang, Y., Zhang, W.: Properties of Sb-doped SnO2 transparent conductive thin films deposited by radio-frequency magnetron sputtering. Thin Solid Films 542, 285–288 (2013). https://doi.org/10.1016/j.tsf.2013.06.077

    Article  ADS  Google Scholar 

  • Yu, C.L., Weng, C.H., Huang, R.J., Sakthinathan, S., Chiu, T.W., Dong, C.: Preparation of CuCrO2 anisotropic dela-fossite-type thin film by electrospinning on glass substrates. Ceramics 4, 364–377 (2021). https://doi.org/10.3390/ceramics4030026

    Article  Google Scholar 

  • Zinchenko, T., Pecherskaya, E., Artamonov, D.: The properties study of transparent conductive oxides (TCO) of tin dioxide (ATO) doped by antimony obtained by spray pyrolysis. AIMS Mater. Sci. 6(2), 276–287 (2019). https://doi.org/10.3934/matersci.2019.2.276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bagheri-Mohagheghi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khademi, N., Bagheri-Mohagheghi, M.M. & Shirpay, A. Bi-doped SnO2 transparent conducting thin films deposited by spray pyrolysis: structural, electrical, optical, and photo-thermoelectric properties. Opt Quant Electron 54, 130 (2022). https://doi.org/10.1007/s11082-022-03515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-03515-z

Keywords

Navigation