Skip to main content
Log in

Thermoelectric Properties of SnO2 Ceramics Doped with Sb and Zn

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline SnO2-based samples (Sn0.97−x Sb0.03Zn x O2, x = 0, 0.01, 0.03) were prepared by solid-state reactions. The thermoelectric properties of SnO2 doped with Sb and Zn were investigated from 300 K to 1100 K. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as identical to the rutile structure, except for the x = 0.03 sample, which had a small amount of Zn2SbO4 as a secondary phase. We found that the power factor of the x = 0.03 sample was significantly improved due to the simultaneous increase in the electrical conductivity and the Seebeck coefficient. A power factor value of ∼2 × 10−4 W m−1 K−2 was obtained for the x = 0.03 sample at 1060 K, 126% higher than that for the undoped sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997). doi:10.1103/PhysRevB.56.R12685.

    Article  CAS  Google Scholar 

  2. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. 39, L1127 (2000). doi:10.1143/JJAP.39.L1127.

    Article  CAS  Google Scholar 

  3. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 350, 292 (2003). doi:10.1063/1.1847723.

    Article  CAS  Google Scholar 

  4. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 8, 409 (1998). doi:10.1039/a706213c.

    Article  CAS  Google Scholar 

  5. Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817 (2009). doi:10.1016/j.jallcom.2008.10.162.

    Article  CAS  Google Scholar 

  6. M. Ohtaki, K. Arai, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009). doi:10.1007/s11664-009-0816-1.

    Article  CAS  Google Scholar 

  7. G.J. McCarthy and J.M. Welton, Powder Diffract. 4, 156 (1989).

    CAS  Google Scholar 

  8. K.L. Chopra, S. Major, and D.K. Pandya, Thin Solid Films 102, 1 (1983). doi:10.1016/0040-6090(83)90256-0.

    Article  CAS  Google Scholar 

  9. G. Behr, G. Krabbes, J. Werner, P. Dordor, and J.-P. Doumerc, Phys Stat. Sol. (a) 118, K91 (1990). doi:10.1002/pssa.2211180238.

    Article  CAS  Google Scholar 

  10. T. Kimura, S. Inada, and T. Yamaguchi, J. Mater. Sci. 24, 220 (1989). doi:10.1007/BF00660957.

    Article  CAS  Google Scholar 

  11. M.S. Castro and C.M. Aldao, J. Euro. Ceram. Soc. 18, 2233 (1998). doi:10.1016/S0955-2219(97)00130-1.

    Article  CAS  Google Scholar 

  12. M.R. Cássia-Santos, V.C. Souza, M.M. Oliveira, F.R. Sensato, W.K. Bacelar, J.W. Gomes, E. Longo, E.R. Leite, and J.A. Varela, Mater. Chem. Phys. 90, 1 (2005). doi:10.1016/j.matchemphys.2003.12.014.

    Article  Google Scholar 

  13. G.-Z. Zhang, J.-F. Wang, H.-C. Chen, W.-B. Su, C.-M. Wang, and P. Qi, J. Phys. D Appl. Phys. 38, 1072 (2005).

    Article  Google Scholar 

  14. R. Parra, C.M. Aldao, J.A. Varela, and M.S. Castro, J. Electroceram. 14, 149 (2005). doi:10.1007/s10832-005-0879-1.

    Article  CAS  Google Scholar 

  15. J.A. Aguilar-Martínez, M.B. Hernández, A.B. Glot, and M.I. Pech-Canul, J. Phys. D Appl. Phys. 40, 7097 (2007). doi:10.1088/0022-3727/40/22/035.

    Article  Google Scholar 

  16. A.V. Gaponov, A.B. Glot, A.I. Ivon, A.M. Chack, and G. Jimenez-Santana, Mater. Sci. Eng. B 145, 76 (2007). doi:10.1016/j.mseb.2007.10.003.

    Article  CAS  Google Scholar 

  17. I. Saadeddin, H.S. Hilal, B. Pecquenard, J. Marcus, A. Mansouri, C. Labrugere, M.A. Subramanian, and G. Campet, Solid State Sci. 8, 7 (2006). doi:10.1016/j.solidstatesciences.2005.09.002.

    Article  CAS  Google Scholar 

  18. D.F. Morgan and D.A. Wright, Br. J. Appl. Phys. 17, 337 (1966). doi:10.1088/0508-3443/17/3/305.

    Article  CAS  Google Scholar 

  19. T. Tsubota, T. Ohno, N. Shiraishi, and Y. Miyazaki, J. Alloys Compd. 463, 288 (2008). doi:10.1016/j.jallcom.2007.09.001.

    Article  CAS  Google Scholar 

  20. J.-H. Yu and G.M. Choi, Sens. Actuators B 52, 251 (1998). doi:10.1016/S0925-4005(98)00275-5.

    Article  Google Scholar 

  21. C.M. Bhandari and D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yanagiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanagiya, S., Nong, N.V., Xu, J. et al. Thermoelectric Properties of SnO2 Ceramics Doped with Sb and Zn. J. Electron. Mater. 40, 674–677 (2011). https://doi.org/10.1007/s11664-010-1506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1506-8

Keywords

Navigation