Skip to main content
Log in

A comparative study on Ga3+, Ti4+, and Bi5+-doped SnO2 transparent conducting oxide thin films deposited by the spin coating method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, we investigated the comparison of structural, optical, and electrical properties of Ga3+, Ti4+, and Bi5+-doped SnO2 thin films which are synthesized by the sol–gel spin coating method. The X-ray diffraction studies revealed that all deposited films exhibit the polycrystalline tetragonal rutile structure of SnO2 and are grown along with the (110) direction. It is found that the structural disordered was present in the SnO2 lattice with these dopants due to different ionic radii of dopant and host elements. The AFM micrographs have shown that the average grain size was decreased with the dopants. The pure SnO2 film showed above 85% of optical transmittance, and Ga3+, Ti4+, and Bi5+-doped SnO2 films exhibited 82, 76, and 75% respectively. Moreover, the bandgap energy value was decreased in Ga: SnO2 (3.72 eV), and Ti: SnO2 films (3.77 eV), whereas in Bi: SnO2 (4.21 eV) films the bandgap energy was increased as compared to the pure SnO2 film (3.91 eV). The lowest sheet resistance (Rsh) 38.6 Ω/Sq, and 38.8 Ω/Sq was found in Ti: SnO2 and Bi: SnO2 films, respectively, as compared to Ga: SnO2 film of 70.3 Ω/Sq. Finally, the figure of merit values was also calculated as a function of Ga, Ti, and Bi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. A.M. Ganose, D.O. Scanlon, J. Mater. Chem C 4, 1467–1475 (2016)

    Article  CAS  Google Scholar 

  2. C. Hogarth, Nature 167, 521–522 (1951)

    Article  CAS  Google Scholar 

  3. A. Bouaine, A. Bourebia, H. Guendouz, Z. Riane, Optik 166, 317–322 (2018)

    Article  CAS  Google Scholar 

  4. K.P. Sibin, N. Swain, P. Chowdhury, A. Dey, N. Sridhara, H.D. Shashikala, A.K. Sharma, H.C. Barshilia, Sol. Energy Mater. Sol. Cells 145, 314–322 (2016)

    Article  CAS  Google Scholar 

  5. M. Alam, D. Cameron, J. Solgel Sci. Technol. 25, 137–145 (2002)

    Article  CAS  Google Scholar 

  6. A. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar, W. Göpel, Thin Solid Films 307, 288–293 (1997)

    Article  CAS  Google Scholar 

  7. P. Sivakumar, H.S. Akkera, T.R.K. Reddy, Y. Bitla, V. Ganesh, P.M. Kumar, G.S. Reddy, M. Poloju, Opt. Mater. 113, 110845 (2021)

    Article  CAS  Google Scholar 

  8. T. Minami, S. Takata, T. Kakumu, J. Vac. Sci. Technol. A 14, 1689 (1996)

    Article  CAS  Google Scholar 

  9. Y. Zhang, S. Wing Ng, X. Lu, Z. Zheng, Chem. Rev. 120, 2049–2122 (2020)

    Article  CAS  Google Scholar 

  10. J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, ACS Nano 4, 43–48 (2010)

    Article  CAS  Google Scholar 

  11. I. Hamberg, A. Hjortsberg, C.G. Granqvist, Appl. Phys. Lett. 40, 362 (1982)

    Article  CAS  Google Scholar 

  12. G. Cai, J. Wang, P.S. Lee, Acc. Chem. Res. 49, 1469–1476 (2016)

    Article  CAS  Google Scholar 

  13. X. Yu, T. Marks, A. Facchetti, Nature Mater. 15, 383–396 (2016)

    Article  CAS  Google Scholar 

  14. R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631–2645 (1998)

    Article  Google Scholar 

  15. C. Granqvist, A. Hultaker, Thin Solid Films 411, 1–5 (2002)

    Article  CAS  Google Scholar 

  16. H. Kim, A. Pique, Appl. Phys. 84, 218–220 (2004)

    CAS  Google Scholar 

  17. Y. Zhang, L. Li, H. Su, W. Huang, X. Dong, J. Mater. Chem. A. 3, 43–59 (2015)

    Article  CAS  Google Scholar 

  18. S. Yu, L. Ding, C. Xue, L. Chen, W.F. Zhang, J. Non Cryst. Solids 358, 3137–3140 (2012)

    Article  CAS  Google Scholar 

  19. G. Turgut, E.F. Keskenler, S. Aydın, E. Sonmez, S. Dogan, B. Duzgun, M. Ertugrul, Superlattices Microst. 56, 107–116 (2013)

    Article  CAS  Google Scholar 

  20. L. He, C. Luan, X. Feng, H. Xiao, X. Yang, D. Wang, J. Ma, Mater. Res. Bull. 118, 110488 (2019)

    Article  CAS  Google Scholar 

  21. B. Teldja, B. Noureddine, B. Azzeddine, T. Meriem, Optik 209, 164586 (2020)

    Article  CAS  Google Scholar 

  22. J. Bahadur, A.H. Ghahremani, B. Martin, T. Druffel, M.K. Sunkara, K. Pal, Org. Electron. 67, 159–167 (2019)

    Article  CAS  Google Scholar 

  23. A. Chen, S. Xia, Z. Ji, J. Xi, H. Qin, Q. Mao, Surf. Coat. Technol. 322, 120–126 (2017)

    Article  CAS  Google Scholar 

  24. T.I. Gandhi, R.R. Babu, K. Ramamurth, Mater. Sci. Semicond. Process. 16, 472–479 (2013)

    Article  CAS  Google Scholar 

  25. M.K. Jaiswal, R. Kumar, J. Alloys Compd. 648, 550–558 (2015)

    Article  CAS  Google Scholar 

  26. S. Maheswari, M. Karunakaran, L.B. Chandrasekar, K. Kasirajan, N. Rajkumar, J. Mater. Sci. Mater. 31, 12586–12594 (2020)

    Article  CAS  Google Scholar 

  27. M.A. Sayeed, H.K. Rouf, J. Mater. Res. Technol. 15, 3409–3425 (2021)

    Article  CAS  Google Scholar 

  28. B. Xu, X.G. Ren, G.R. Gu, L.L. Lan, B.J. Wu, Superlattices Microstruct. 89, 34–42 (2016)

    Article  CAS  Google Scholar 

  29. S. Gürakar, T. Serin, N. Serin, Appl. Surf. Sci. 352, 16–22 (2015)

    Article  Google Scholar 

  30. T. Prathyusha, T. Srikanth, A.S. Reddy, P.S. Reddy, C.S. Reddy, Optik 127, 9457–9463 (2016)

    Article  CAS  Google Scholar 

  31. J. Li, L. Li, W. Chen, Q. Yi, G. Zou, Nanotechnology 32, 025606 (2021)

    Article  CAS  Google Scholar 

  32. S. Yu, L. Ding, C. Xue, L. Chen, W.F. Zhang, J. Non-Cryst. Solids 358, 3137–3140 (2012)

    Article  CAS  Google Scholar 

  33. J.I. Scott, R.F.M. Gazoni, M.W. Allen, R.J. Reeves, J. Appl. Phys. 126, 135702 (2019)

    Article  Google Scholar 

  34. S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Appl. Appl. Surf. Sci. 258, 3255–3259 (2012)

    Article  CAS  Google Scholar 

  35. P. Sivakumar, H.S. Akkera, T.R.K. Reddy, G.S. Reddy, N. Kambhala, N.N.K. Reddy, Optik 226, 165859 (2021)

    Article  CAS  Google Scholar 

  36. H.S. Akkera, P. Sivakumar, Y. Bitla, V. Ganesh, N. Kambhala, C.S. Naveen, T.R.K. Reddy, G.S. Reddy, Phys. B: Condens. Matter 638, 413839 (2022)

    Article  CAS  Google Scholar 

  37. M.A. Islam, J.R. Mou, M.F. Hossain, A.M.M.T. Karim, M. Kamruzzaman, M.S. Hossain, J. Sol-Gel Sci. Technol. 96, 304–313 (2020)

    Article  CAS  Google Scholar 

  38. B.D. Cullity, Elements of X-Ray diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1978)

    Google Scholar 

  39. D. Suthar, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, J. Mater. Sci. Mater. Electron. 32, 19070–19082 (2021)

    Article  CAS  Google Scholar 

  40. M. Ayadi, O. Benhaoua, M. Sebais, O. Halimi, B. Boudine, M.S. Aida, Mater. Res. Express 6, 076407 (2019)

    Article  CAS  Google Scholar 

  41. W.R. Phillips, Surf. Coat. Technol. 68, 770–775 (1994)

    Article  Google Scholar 

  42. C.Z. Chen, S.W. Zhu, W.Q. Zhang, Y. Li, C.B. Cai, Results Phys. 7, 2588–2593 (2017)

    Article  Google Scholar 

  43. E. Abdelkader, L. Nadjia, B. Naceur, B. Noureddine, J. Alloys Compd. 679, 408–419 (2016)

    Article  CAS  Google Scholar 

  44. G. Chasta, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, J. Mater. Sci. Mater. Electron. 33, 139–157 (2022)

    Article  CAS  Google Scholar 

  45. D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144–3151 (1972)

    Article  Google Scholar 

  46. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47–154 (2005)

    Article  CAS  Google Scholar 

  47. Y.J. Seo, G.W. Kim, C.H. Sung, M.S. Anwar, C.G. Lee, B.H. Koo, Curr. Appl. Phys. 11, S310–S313 (2011)

    Article  Google Scholar 

  48. Q.P. Tran, J.S. Fang, T.S. Chin, Mater. Sci. Semicond. Process 40, 664–669 (2015)

    Article  CAS  Google Scholar 

  49. J. Mazloom, F.E. Ghodsi, Mater. Res. Bull. 48, 1468–1476 (2013)

    Article  CAS  Google Scholar 

  50. E. Burstein, Phys. Rev. 93, 632–633 (1954)

    Article  CAS  Google Scholar 

  51. B. Benhaoua, S. Abbas, A. Rahal, A. Benhaoua, M.S. Aida, Superlattice. Microst. 83, 78–88 (2015)

    Article  CAS  Google Scholar 

  52. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the IISc Bangalore, India, and Osmania University, India, for providing the needful measurements.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed.

Corresponding author

Correspondence to Harish Sharma Akkera.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkera, H.S., Sivakumar, P. & Ashok, A. A comparative study on Ga3+, Ti4+, and Bi5+-doped SnO2 transparent conducting oxide thin films deposited by the spin coating method. J Mater Sci: Mater Electron 34, 119 (2023). https://doi.org/10.1007/s10854-022-09520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09520-y

Navigation