Skip to main content

Advertisement

Log in

InGaAs/InP evanescently coupled one-sided junction waveguide photodiode design

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

An evanescently coupled one-sided junction waveguide photodiode (EC-OSJ-WGPD) is proposed and investigated numerically. The one-sided junction photodiode has a simple structure, while the characteristics of high speed and high output power are maintained. The designed EC-OSJ-WGPD with an absorption layer thickness of 350 nm achieves a bandwidth of 44.5 GHz and responsivity of 0.98 A/W. Comprehensive analyses of the EC-OSJ-WGPD are presented including photogeneration rate, internal optical power distribution, energy band diagram, internal electric field, photocurrent, and 3-dB bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Achouche, M., Demiguel, S., Derouin, E., Carpentier, D., Barthe, F., Blache, F., Magnin, V., Harari, J., Decoster, D.: New all 2-inch manufacturable high performance evanescent coupled waveguide photodiodes with etched mirrors for 40 Gb/s optical receivers. In: Proceedings Optical Fiber Communications (OFC 2003), pp. 23–24 (2003)

  • Achouche, M., Magnin, V., Harari, J., Lelarge, F., Derouin, E., Jany, C., Carpentier, D., Blache, F., Decoster, D.: High performance evanescent edge coupled waveguide unitraveling-carrier photodiodes for > 40-Gb/s optical receivers. IEEE Photonics Technol. Lett. 16, 584–586 (2004)

    ADS  Google Scholar 

  • Adachi, S.: Physical properties of III-V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP. Wiley, New York (1992)

    Google Scholar 

  • Alping, A.: Waveguide pin photodetectors: theoretical analysis and design criteria. IEE Proc. J. Optoelectron. 136, 177–182 (1989)

    Google Scholar 

  • Bach, H.G., Beling, A., Mekonnen, G.G., Kunkel, R., Schmidt, D., Ebert, W., Seeger, A., Stollberg, M., Schlaak, W.: InP-based waveguide-integrated photodetector with 100-GHz bandwidth. IEEE J. Sel. Top. Quantum Electron. 10, 668–672 (2004)

    ADS  Google Scholar 

  • Beling, A., Bach, H., Schmidt, D.: InP-based waveguide integrated photodetectors for high-speed optical communication systems. https://www.researchgate.net/publication/228512250. Accessed June 2019

  • Demiguel, S., Giraudet, L., Joulaud, L., Decobert, J., Blache, F., Coupé, V., Jorge, F., Boucherez, E., Achouche, M., Devaux, F.: Evanescently coupled photodiodes integrating a double-stage taper for 40-Gb/s applications-compared performance with side-illuminated photodiodes. J. Lightw. Technol. 20, 2004–2014 (2002)

    ADS  Google Scholar 

  • Demiguel, S., Li, N., Li, X., Zheng, X., Kim, J., Campbell, J.C., Lu, H., Anselm, A.: Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications. IEEE Photonics Technol. Lett. 15, 1761–1763 (2003)

    ADS  Google Scholar 

  • Demiguel, S., Li, X., Li, N., Chen, H., Campbell, J.C., Wei, J., Anselm, A.: Analysis of partially depleted absorber waveguide photodiodes. J. Lightw. Technol. 23, 2505–2512 (2005)

    ADS  Google Scholar 

  • Fukuchi, K., Kasamatsu, T., Morie, M., Ohhira, R., Ito, T., Sekiya, K., Ogasahara, D., Ono, T.: 10.92-Tb/s (273 × 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment. In: Proceedings of the Optical Fiber Communication Conference and International Conference on Quantum Information, p. PD24. OSA, Washington, DC (2001)

  • Giraudet, L.: Optical design of evanescently coupled, waveguide-fed photodiodes for ultrawide-band applications. IEEE Photonics Technol. Lett. 11, 111–113 (1999)

    ADS  Google Scholar 

  • Giraudet, L., Harari, J., Magnin, V., Pagnod, P., Boucherez, E., Decobert, J., Bonnet-Gamard, J., Carpentier, D., Jany, C., Blache, F., Decoster, D.: High speed evanescently coupled PIN photodiodes for hybridisation on silicon platform optimised with genetic algorithm. Electron. Lett. 37, 973–975 (2001)

    ADS  Google Scholar 

  • Guo, L., Huang, Y., Duan, X., Ren, X., Wang, Q., Zhang, X.: High-speed modified uni-traveling carrier photodiode with a new absorber design. Chin. Opt. Lett. 10, S12301 (2012)

    Google Scholar 

  • Harari, J., Journet, F., Rabii, O., Jin, G., Vilcot, J.P., Decoster, D.: Modeling of waveguide PIN photodetectors under very high optical power. IEEE Trans. Microw. Theory Tech. 43, 2304–2310 (1995)

    ADS  Google Scholar 

  • Ishibashi, T., Shimizu, N., Kodama, S., Ito, H., Nagatsuma, T., Furuta, T.: Uni-traveling-carrier photodiodes. In: OSA ultrafast electronics and optoelectronics topical meeting (1997)

  • Ishibashi, T., Muramoto, Y., Yoshimatsu, T., Ito, H.: Unitraveling-carrier photodiodes for terahertz applications. IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014)

    ADS  Google Scholar 

  • Ito, H., Furuta, T., Kodama, S., Ishibashi, T.: InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth. Electron. Lett. 36, 1809–1810 (2000)

    ADS  Google Scholar 

  • Jiang, H., Shin, D.-S., Liao, T.-S., Mages, P., Clawson, A.R., Yu, P.K.L., Vang, T.A., Scott, D.C.: Waveguide photodiodes for high-speed detection. In: Hwu, R.J., Wu, K. (eds.) Terahertz and Gigahertz Electronics and Photonics, pp. 259–266. International Society for Optics and Photonics, Bellingham (2003)

    Google Scholar 

  • Kato, K., Hata, S., Kawano, K., Yoshida, J., Kozen, A.: A high-efficiency 50 GHz InGaAs multimode waveguide photodetector. IEEE J. Quantum Electron. 28, 2728–2735 (1992)

    ADS  Google Scholar 

  • Koenig, S., Lopez-Diaz, D., Antes, J., Boes, F., Henneberger, R., Leuther, A., Tessmann, A., Schmogrow, R., Hillerkuss, D., Palmer, R., Zwick, T., Koos, C., Freude, W., Ambacher, O., Leuthold, J., Kallfass, I.: Wireless sub-THz communication system with high data rate. Nat. Photonics 7, 977–981 (2013)

    ADS  Google Scholar 

  • Lee, T.-P., Burrus, C., Dentai, A.: InGaAs/InP p-i-n photodiodes for lightwave communications at the 0.95–1.65 µm wavelength. IEEE J. Quantum Electron. 17, 232–238 (1981)

    ADS  Google Scholar 

  • Li, K., Rezek, E., Law, H.D.: InGaAs pin photodiode fabricated on semi-insulating InP substrate for monolithic integration. Electron. Lett. 20, 196–198 (1984)

    ADS  Google Scholar 

  • Li, Z., Pan, H., Chen, H., Beling, A., Campbell, J.C.: High-saturation-current modified uni-traveling-carrier photodiode with cliff layer. IEEE J. Quantum Electron. 46, 626–632 (2010)

    ADS  Google Scholar 

  • Li, Q., Sun, K., Li, K., Yu, Q., Runge, P., Ebert, W., Beling, A., Campbell, J.C.: High-power evanescently coupled waveguide MUTC photodiode with > 105-GHz bandwidth. J. Lightw. Technol. 35, 4752–4757 (2017)

    ADS  Google Scholar 

  • Liu, S.Q., Yang, X.H., Liu, Y., Li, B., Han, Q.: Design and fabrication of a high-performance evanescently coupled waveguide photodetector. Chin. Phys. B. 22, 108503 (2013)

    ADS  Google Scholar 

  • Magnin, V., Giraudet, L., Harari, J., Decobert, J., Pagnot, P., Boucherez, E., Decoster, D.: Design, optimization, and fabrication of side-illuminated p-i-n photodetectors with high responsivity and high alignment tolerance for 1.3- and 1.55-μm wavelength use. J. Lightw. Technol. 20, 477–488 (2002)

    ADS  Google Scholar 

  • Makiuchi, M., Norimatsu, M., Sakurai, C., Kondo, K., Yamamoto, N., Yano, M.: Flip-chip planar GaInAs/InP p-i-n photodiodes-fabrication and characteristics. J. Lightw. Technol. 13, 2270–2275 (1995)

    ADS  Google Scholar 

  • Meng, Q., Wang, H., Liu, C., Guo, X., Gao, J., Ang, K.S.: High-speed and high-responsivity InP based uni-traveling-carrier photodiodes. IEEE J. Electron Dev. Soc. 5, 40–44 (2017)

    Google Scholar 

  • Michel, N., Magnin, V., Harari, J., Marceaux, A., Parillaud, O., Decoster, D., Vodjdani, N.: High-power evanescently-coupled waveguide photodiodes. IEEE Proc. Optoelectron. 153, 199–204 (2006)

    Google Scholar 

  • Muramoto, Y., Ishibashi, T.: InP/InGaAs pin photodiode structure maximising bandwidth and efficiency. Electron. Lett. 39, 1749–1750 (2003)

    ADS  Google Scholar 

  • Nagatsuma, T.: Terahertz technologies: present and future. IEICE Electron. Exp. 8, 1127–1142 (2011)

    Google Scholar 

  • Nagatsuma, T., Ito, H., Ishibashi, T.: High-power RF photodiodes and their applications. Laser Photonics Rev. 3, 123–137 (2009)

    ADS  Google Scholar 

  • Nagatsuma, T., Kaino, A., Hisatake, S., Ajito, K., Song, H.-J., Wakatsuki, A., Muramoto, Y., Kukutsu, N., Kado, Y.: Continuous-wave terahertz spectroscopy system based on photodiodes. PIERS Online 6, 390–394 (2010)

    Google Scholar 

  • Nahory, R.E., Pollack, M.A., Johnston, W.D., Barns, R.L.: Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP. Appl. Phys. Lett. 33, 659–661 (1978)

    ADS  Google Scholar 

  • Pan, C.-L., Chow, C.W., Yeh, C.H., Huang, C.B., Shi, J.W.: Recent advances in millimeter-wave photonic wireless links for very high data rate communication. In: 2011 Asia Communications and Photonics Conference and Exhibition (ACP) (2011)

  • Park, J.W.: High-responsivity and high-speed waveguide photodiode with a thin absorption region. IEEE Photonics Technol. Lett. 22, 975–977 (2010)

    ADS  Google Scholar 

  • Park, J.-W.: Waveguide photodiode (WGPD) with a thin absorption layer. In: Kim, K.Y. (ed.) Advances in Optical and Photonic Devices. InTech, London (2012)

    Google Scholar 

  • Park, J.W., Ko, H.S., Sim, E.D., Baek, Y.S.: Optimization of high responsivity waveguide photodiode with a thin absorption layer. Appl. Phys. Lett. 90, 091101 (2007)

    ADS  Google Scholar 

  • Razavi, P., Schulz, S., Roycroft, B., Corbett, B., O’Reilly, E.P.: Design guidelines for edge-coupled waveguide unitravelling carrier photodiodes with improved bandwidth. IET Optoelectron. 13, 267–272 (2019)

    Google Scholar 

  • Renaud, C.C.: Ultra-high-speed uni-traveling carrier photodiodes and their applications. In: 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013)

  • Rymanov, V., Stöhr, A., Dülme, S., Tekin, T.: Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power. Opt. Exp. 22, 7550–7558 (2014)

    ADS  Google Scholar 

  • Seeds, A.J., Williams, K.J.: Microwave photonics. J. Lightw. Technol. 24, 4628–4641 (2006)

    ADS  Google Scholar 

  • Seifert, S., Runge, P.: Revised refractive index and absorption of In1−xGaxAsyP1−y lattice-matched to InP in transparent and absorption IR-region. Opt. Mater. Express 6, 629–639 (2016)

    ADS  Google Scholar 

  • Shi, J.-W., Wu, Y.-S., Huang, F.-H., Chan, Y.-J.: High-responsivity, high-speed, and high-saturation-power performances of evanescently coupled photodiodes with partially p-doped photo-absorption layer. In: IEDM Technical Digest. IEEE International Electron Devices Meeting, pp. 351–354 (2004)

  • Shi, J.W., Wu, Y.S., Wu, C.Y., Chiu, P.H., Hong, C.C.: High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength. IEEE Photonics Technol. Lett. 17, 1929–1931 (2005)

    ADS  Google Scholar 

  • Shi, J.W., Huang, C.B., Pan, C.L.: Millimeter-wave photonic wireless links for very high data rate communication. NPG Asia Mater. 3, 41–48 (2011)

    Google Scholar 

  • Shimizu, N., Watanabe, N., Furuta, T., Ishibashi, T.: InP–InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz. IEEE Photonics Technol. Lett. 10, 412–414 (1998)

    ADS  Google Scholar 

  • Song, H.J., Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1, 256–263 (2011)

    ADS  Google Scholar 

  • Sun, S., Liang, S., Xie, X., Xu, J., Guo, L., Zhu, H., Wang, W.: Zero-bias 32 Gb/s evanescently coupled InGaAs/InP UTC-PDs. Opt. Laser Technol. 101, 457–461 (2018)

    ADS  Google Scholar 

  • Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007)

    ADS  Google Scholar 

  • Urick, V.J., Bucholtz, F., McKinney, J.D., Devgan, P.S., Campillo, A.L., Dexter, J.L., Williams, K.J.: Long-haul analog photonics. J. Light. Technol. 29, 1182–1205 (2011).

    ADS  Google Scholar 

  • Weber, J.-P.: Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable Bragg filters. IEEE J. Quantum Electron. 30, 1801–1816 (1994)

    ADS  Google Scholar 

  • Wu, Y.S., Shi, J.W., Wu, J.Y., Huang, F.H., Chan, Y.J., Huang, Y.L., Xuan, R.: High-performance evanescently edge coupled photodiodes with partially p-doped photoabsorption layer at 1.55-μm wavelength. IEEE Photonics Technol. Lett. 17, 878–880 (2005)

    ADS  Google Scholar 

  • Xu, J., Zhang, X., Kishk, A.: Numerical study of the evanescently coupled one-sided junction waveguide photodiode. In: Proceedings of the 19th International Conference on Numerical Simulation of Optoelectronic Devices (2019b)

  • Xu, J., Zhang, X., Kishk, A.: Design of modified InGaAs/InP one-sided junction photodiodes with improved response at high light intensity. Appl. Opt. 57, 9365–9374 (2018)

    ADS  Google Scholar 

  • Xu, J., Zhang, X., Kishk, A.: Design of high speed InGaAs/InP one-sided junction photodiodes with low junction capacitance. Opt. Commun. 437, 321–329 (2019)

    ADS  Google Scholar 

  • Zhou, G., Runge, P., Keyvaninia, S., Serfert, S., Ebert, W., Mutschall, S., Seeger, A., Li, Q., Beling, A.: High-power InP-based waveguide integrated modified uni-traveling-carrier photodiodes. J. Lightw. Technol. 35, 717–721 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been worked by FRQNT team research project of Quebec.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xu or Xiupu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Numerical Simulation of Optoelectronic Devices.

Guest edited by Angela Thränhardt, Karin Hinzer, Weida Hu, Stefan Schulz, Slawomir Sujecki and Yuhrenn Wu.

Appendix

Appendix

The parameters used in TCAD simulation are discussed in Xu et al. (2019a) and given in Tables 3 and 4. Basic models included in TCAD simulation are concentration-dependent lifetime model CONSRH, concentration-dependent mobility model ANALYTIC, parallel electric field dependent mobility model FLDMOB, Shockley–Read–Hall recombination minority carrier lifetime model SRH, and Auger recombination model AUGER.

Table 3 Material parameters used in the TCAD simulation
Table 4 Mobility model parameters used in the TCAD simulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, X. & Kishk, A. InGaAs/InP evanescently coupled one-sided junction waveguide photodiode design. Opt Quant Electron 52, 266 (2020). https://doi.org/10.1007/s11082-020-02392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02392-8

Keywords

Navigation