Skip to main content
Log in

Investigation of dependence the hole radius formed in InGaP on the group velocity, quality factor and defect band structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the structure being investigated consists of periodic layers of InGaP containing a defect region in air hole and GaAs. Finite difference time-domain calculations were performed to show the influences of hole radius on the group velocity (\( V_{g} \)), quality (\( Q \)) factor and transmission of the structure. As well as effect the hole radius deviation on the \( Q \) factor. Also, we will investigate property of the defect region on the band structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aharonovich, I., Greentree, A.D., Prawer, S.: Diamond photonics. Nat. Photon. 5, 397–405 (2011)

    Article  ADS  Google Scholar 

  • Ali, L.M.: Simulation of Q-factor, bandgap frequency and defect band structure dependence upon hole radius of air formed in InxGa1-xAs waveguides. Int. J. Mod. Phys. B 30, 1650144 (2016)

    Article  ADS  Google Scholar 

  • Astratov, V.N., Stevenson, R.M., Culshaw, I.S., Whittaker, D.M., Skolnick, M.S., Krauss, T.F., de la Rue, R.M.: Heavy photon dispersions in photonic crystal waveguides. Appl. Phys. Lett. 77, 178–180 (2000)

    Article  ADS  Google Scholar 

  • Baba, T., Mori, D., Inoshita, K., Kuroki, Y.: Light localization in line defect photonic crystal waveguides. IEEE J. Quant. Electron. 10, 484–491 (2004)

    Article  Google Scholar 

  • Chutinan, A., Noda, S.: Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal. J. Opt. Soc. Am. B 16, 240–244 (1999)

    Article  ADS  Google Scholar 

  • Dae-Seon, K., Yonkil, J., Hojung, J., Jae-Hyung, J.: Triple-junction InGaP/GaAs/Ge solar cells integrated with polymethyl methacrylate subwavelength structure. Appl. Surf. Science 320, 901–907 (2014)

    Article  ADS  Google Scholar 

  • Deotare, P.B., McCutcheon, M.W., Frank, I.W., Khan, M., Loncar, M.: High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 94, 121106 (2009)

    Article  ADS  Google Scholar 

  • Dutta, H.S., Pal, S.: Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt. Quant. Electron. 45, 907–917 (2013)

    Article  Google Scholar 

  • Engelen, R.J.P., Sugimoto, Y., Watanabe, Y., Korterik, J.P., Ikeda, N., van Hulst, N.F., Asakawa, K., Kuipers, L.: The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14, 1658–1672 (2006)

    Article  ADS  Google Scholar 

  • Fu, Y.J., Lee, Y.S., Lin, S.-D.: Design and demonstration of high quality-factor H1—cavity in two-dimensional photonic crystal. Opt. Lett. 38, 4915–4918 (2013)

    Article  ADS  Google Scholar 

  • Gaponenko, S.V.: Introduction to Nanophotonics, pp. 200–232. Cambridge University Press, N.Y. (2010)

    Book  Google Scholar 

  • Gregersen, N., Reitzenstein, S., Kistner, C., Strauss, M., Schneider, C., Höfling, S., Worschech, L., Forchel, A., Nielsen, T.R., Mørk, J., Gérard, J.-M.: Numerical and experimental study of the Q factor of high-Q micropillar cavities. IEEE J. Quant. Electron. 46, 1470–1483 (2010)

    Article  ADS  Google Scholar 

  • Hache, A., Slimani, A.: A model coaxial photonic crystal for studying band structures, dispersion, field localization, and superluminal effects. Am. J. Phys. 72, 916–921 (2004)

    Article  ADS  Google Scholar 

  • Hou, J., Wu, H., Citrin, D.S., Mo, W., Gao, D., Zhou, Z.: Wideband slow light in chirped slot photonic-crystal coupled waveguides. Opt. Express 18, 10567–10580 (2010)

    Article  ADS  Google Scholar 

  • Jugessur, A.S., De La Rue, R.M., Pottier, P.: One dimensional periodic photonic crystal microcavity filters with transition mode matching features embedded in ridge waveguide. Electron. Lett. 39, 367–369 (2003)

    Article  Google Scholar 

  • Kang, C., Weiss, S.M.: Photonic crystal with multiple-hole defect for sensor applications. Opt. Express 16, 18188–18193 (2008)

    Article  ADS  Google Scholar 

  • Khodamohammadi, A., Khoshsima, H., Fallahi, V., Sahrai, M.: Wideband slab photonic crystal waveguides for slow light using differential optofluidic infiltration. Appl. Opt. 54, 1002–1009 (2015)

    Article  ADS  Google Scholar 

  • Krauss, T.F.: Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40, 2666–2670 (2007)

    Article  ADS  Google Scholar 

  • Kriegel, I., Scotognella, F.: Magneto-optical switching in microcavities based on a TGG defect sandwiched between periodic and disordered one-dimensional photonic structures. Optik 142, 249–255 (2017)

    Article  ADS  Google Scholar 

  • Kuramochi, E., Notomi, M., Mitsugi, S., Shinya, A., Tanabe, T.: Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006)

    Article  ADS  Google Scholar 

  • Maes, B., Petracek, J., Burger, S., Kwiecien, P., Luksch, J., Richter, I.: Simulations of high-Q optical nanocavities with a gradual 1D bandgap. Opt. Express 21, 6794–6806 (2013)

    Article  ADS  Google Scholar 

  • Moon, S.-K., Yang, J.-K.: Numerical study of the photonic-bandgap effect in two-dimensional slab photonic structures with long-range order. J. Opt. 15, 075704 (2013)

    Article  ADS  Google Scholar 

  • Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’Brien, J.D., Dapkus, P.D., Kim, I.: Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)

    Article  Google Scholar 

  • Safavi-Naeini, A.H., Painter, O.: Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express 18, 14926–14943 (2010)

    Article  ADS  Google Scholar 

  • Song, B.S., Noda, S., Asano, T., Akahane, Y.: Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Materials 4, 207–210 (2005)

    Article  ADS  Google Scholar 

  • Srinivasan, K., Barclay, P.E., Painter, O.: Fabrication-tolerant high quality factor photonic crystal microcavities. Opt. Express 12, 1458–1463 (2004)

    Article  ADS  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, pp. 188–225. Artech House, Norwood (2005)

    MATH  Google Scholar 

  • Tao, S.H., Yu, M.B., Song, J.F., Fang, Q., Yang, R., Lo, G.Q., Kwong, D.L.: Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform. Appl. Phys. Lett. 92, 031113 (2008)

    Article  ADS  Google Scholar 

  • Tucker, R.S., Ku, P.-C., Chang-Hasnain, C.J.: Slow-light optical buffers—capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005)

    Article  ADS  Google Scholar 

  • Tzu-Pin, Ch., Ssu-I, F., Wen-Chau, L.: Surface treatment effect on temperature-dependent properties of InGaP/GaAs heterobipolar transistors. J. Appl. Phys. 101, 034501 (2007)

    Article  ADS  Google Scholar 

  • Vlasov, Y.A., O’Boyle, M., Hamann, H.F., Mcab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)

    Article  ADS  Google Scholar 

  • Wang, D., Yu, Z., Liu, Y., Zhou, S., Guo, X., Shu, C.: Slight disorder effects in two dimensional photonic crystal structures. Optik 125, 5418–5421 (2014)

    Article  ADS  Google Scholar 

  • Xiao, X., Wenjun, W., Shuhong, L., Wanquan, Z., Dong, Z., Qianqian, D., Xuexi, G., Bingyuan, Z.: Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals. Optik 127, 135–138 (2016)

    Article  ADS  Google Scholar 

  • Yang, D., Kita, S., Liang, F., Wang, C., Tian, H., Ji, Y., Loncar, M., Quan, Q.: High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl. Phys. Lett. 105, 063108 (2014)

    Article  ADS  Google Scholar 

  • Yeh, D.-W., Wu, C.-J.: Thickness-dependent photonic bandgap in a one-dimensional single negative photonic crystal. J. Opt. Soc. Am. B 26(8), 1506–1510 (2009)

    Article  ADS  Google Scholar 

  • Yu, W.: Electromagnetic Simulation Techniques Based on the FDTD Method, pp. 17–25. Wiley, Hoboken (2009)

    Google Scholar 

  • Zhao, Q., Cui, K., Feng, X., Liu, F., Zhang, W., Huang, Y.: Low loss sharp photonic crystal waveguide bends. Opt. Commun. 355, 209–212 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latef M. Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, L.M., Abed, F.A. Investigation of dependence the hole radius formed in InGaP on the group velocity, quality factor and defect band structures. Opt Quant Electron 50, 386 (2018). https://doi.org/10.1007/s11082-018-1629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1629-3

Keywords

Navigation