Skip to main content
Log in

An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A near perfect, ultra-broadband and highly-efficient terahertz reflective polarization converter based on multilayer metamaterial is proposed in this paper. The hybrid metamaterial unit structure consists of a split-ring metal pattern and a metal sheet separated by a dielectric resonator spacer. The polarization conversion ratio (PCR) is above 90% from 2.06 to 4.26 THz, with an optimal range between 2.98 and 4.16 THz where the efficiency is above 98% for normal incidence. It also shows excellent performance for oblique incidences. Moreover, the working band and the optimized frequency range for the polarization conversion can be manipulated by changing the open angle between the metallic arcs and the substrate thickness, respectively. Based on this design, two types of hybrid metamaterial converters are also investigated to swith off polarization conversion altogether or modify the polarization conversion bandwidth. A polarization converter with temperature controlled PCR is realized by adding a vanadium oxide (VO2) mask on the designed structure. In addition, by integrating photoconductive silicon islands between the split-ring and metal bar a dual-band polarization converter can be realized. Combining with a polarizer, this window can act as an active THz filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cao, W., Singh, R., Zhang, C.H., Han, J.G., Zhang, W.L.: Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators. Appl. Phys. Lett. 103(10), 101106 (2013)

    Article  ADS  Google Scholar 

  • Chen, H.T.: Interference theory of metamaterial perfect absorbers. Opt. Express 20, 7165–7172 (2012)

    Article  ADS  Google Scholar 

  • Chen, H.T., Padilla, W.J., Zide, J.M.O., Gossard, A.C., Taylor, A.J., Averitt, R.D.: Active terahertz metamaterial devices. Nature 444, 597–600 (2006)

    Article  ADS  Google Scholar 

  • Chen, H.T., O’Hara, J., Azad, K., J Taylor, A., Averitt, R., Shrekenhamer, D.: Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics 2, 295–298 (2008)

    Article  Google Scholar 

  • Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D., Taylor, A.J.: A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3, 148–151 (2009)

    Article  ADS  Google Scholar 

  • Cheng, Y., Withayachumnankul, W., Upadhyay, A., Headland, D., Nie, Y., Zhou Gong, R., Bhaskaran, M., Sriram, S., Abbott, D.: Ultrabroadband reflective polarization convertor for terahertz waves. Appl. Phys. Lett. 105(18), 181111 (2014)

    Article  ADS  Google Scholar 

  • Fan, R.H., Zhou, Y., Ren, X.P., Peng, R.W., Jiang, S.C., Xu, D.H., Xiong, X., Huang, X.R., Wang, M.: Freely tunable broadband polarization rotator for terahertz waves. Adv. Mater. 27, 1201–1206 (2015)

    Article  Google Scholar 

  • Grady, N., Heyes, J., Roy Chowdhury, D., Zeng, Y., Reiten, M., Azad, K., Taylor, A.A., Dalvit, R.D., Chen, H.T.: Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013)

    Article  ADS  Google Scholar 

  • Gu, J.Q., Singh, R., Liu, X.J., Zhang, X.Q., Ma, Y.F., Zhang, S., Maier, S., Tian, Z., Azad, K., Chen, H.T., Taylor, J.A., Han, J.G., Zhang, W.L.: Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012)

    Article  ADS  Google Scholar 

  • Jepsen, P., Fischer, M., Thoman, A., Helm, H.: Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys. Rev. B 74(20), 205103 (2006)

    Article  ADS  Google Scholar 

  • Kakenov, N., Takan, T., Ozkan, V.A., Balci, O., Polat, E.O., Altan, H., Kocabas, C.: Graphene-enabled electrically controlled terahertz spatial light modulators. Opt. Lett. 40(9), 1984–1987 (2015)  

    Article  ADS  Google Scholar 

  • Kleine-Ostmann, T., Nagatsuma, T.: A review on terahertz communications research. J. Infrared Millim Terahertz Waves 32, 143–171 (2011)

    Article  Google Scholar 

  • Liu, D.J., Xiao, Z.Y., Ma, X.L., Xu, K.K., Tang, J.Y., Wang, Z.H.: Broadband asymmetric transmission and polarization conversion of a linearly polarized wave based on chiral metamaterial in terahertz region. Wave Motion 66, 1–9 (2016)

    Article  Google Scholar 

  • Liu, H.B., Zhong, H., Karpowicz, N., Chen, Y.Q., Zhang, X.C.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007)

    Article  Google Scholar 

  • Lv, T.T., Li, Y.X., Ma, H.F., Zhu, Z., Li, Z.P., Guan, C.Y., Shi, J.H., Zhang, H., Cui, T.J.: Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 6(23), 186 (2016)

    Google Scholar 

  • Pendry, B.J., Holden, A., Stewart, J.W., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  ADS  Google Scholar 

  • Pitchappa, P., Manjappa, M., Ho, C., Singh, R., Singh, N., Lee, C.K.: Active control of electromagnetically induced transparency analog in terahertz mems metamaterial. Adv. Opt. Mater. 4, 541–547 (2016)

    Article  Google Scholar 

  • Seo, M., Kyoung, J., Park, H., Koo, S., Kim, H.S., Bernien, H., Kim, B.J., Choe, J.H., Ahn, Y.H., Kim, H.T., Park, N., Park, Q.H., Ahn, K., Kim, D.S.: Active terahertz nanoantennas based on VO2 phase transition. Nano Lett. 10, 2064–2068 (2010)

    Article  ADS  Google Scholar 

  • Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2–11 (2007)

    Article  ADS  Google Scholar 

  • Tang, J.Y., Xiao, Z.Y., Xu, K.K., Ma, X.L., Liu, D.J., Wang, Z.H.: Cross polarization conversion based on a new chiral spiral slot structure in thz region. Opt. Quant. Electron. 48, 111 (2016)

    Article  Google Scholar 

  • Tao, H., Strikwerda, A., Fan, K., Padilla, W., Zhang, X., Averitt, R.: Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103(14), 147401 (2009)

    Article  ADS  Google Scholar 

  • Wang, G.C., Zhang, J.N., Zhang, B., He, T., He, Y.N., Shen, J.L.: Photo-excited terahertz switch based on composite metamaterial structure. Opt. Commun. 374, 64–68 (2016)

    Article  ADS  Google Scholar 

  • Wen, Q.Y., Zhang, H.W., Yang, Q.H., Xie, Y.S., Chen, K., Liu, Y.L.: Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97(2), 021111 (2010)

    Article  ADS  Google Scholar 

  • Wen, X., Zheng, J.: Broadband THZ reflective polarization rotator by multiple plasmon resonances. Opt. Express 22(23), 28292–28300 (2014)

    Article  ADS  Google Scholar 

  • Xiao, X., Li, Y.H., Hou, B., Zhou, B.P., Wen, W.: Subwavelength polarization rotators via double-layer metal hole arrays. Opt. Lett. 37, 3594–3596 (2012)

    Article  ADS  Google Scholar 

  • Zhang, B., He, T., Shen, J.L., Hou, Y.B., Hu, Y.F., Zang, M.D., Chen, T.J., Feng, S.F., Teng, F., Qin, L.: Conjugated polymer-based broadband terahertz wave modulator. Opt. Lett. 39(21), 6110–6613 (2014)  

    Article  ADS  Google Scholar 

  • Zhang, B., Lv, L.F., He, T., Chen, T.J., Zang, M.D., Zhong, L., Wang, X.K., Shen, J.L., Hou, Y.B.: Active terahertz device based on optically controlled organometal halide perovskite. Appl. Phys. Lett. 107(9), 093301 (2015)  

    Article  ADS  Google Scholar 

  • Zhang, J.N., Wang, G.C., Zhang, B., He, T., He, Y.N., Shen, J.L.: Photo-excited broadband tunable terahertz metamaterial absorber. Opt. Mater. 54, 32–36 (2016)

    Article  ADS  Google Scholar 

  • Zhang, L.B., Zhou, P.H., Chen, H.Y., Lu, H.P., Xie, J.L., Deng, L.J.: Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies. Appl. Phys. B 120, 617–622 (2015)

    Article  ADS  Google Scholar 

  • Zhang, S., Zhou, J., Park, Y.S., Rho, J., Singh, R., Nam, S., Azad, A.K., Chen, H.T., Yin, X., Taylor, A.J., Zhang, X.: Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012)

    Article  Google Scholar 

  • Zhong, L., Zhang, B., He, T., Lv, L.F., Hou, Y.B., Shen, J.L.: Conjugated polymer based active electric-controlled terahertz device. Appl. Phys. Lett. 108(10), 103301 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61505125) and the National Instrumentation Program (Grant No. 2012YQ140005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhang or Jingling Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, B. & Shen, J. An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial. Opt Quant Electron 50, 315 (2018). https://doi.org/10.1007/s11082-018-1571-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1571-4

Keywords

Navigation