Skip to main content
Log in

Actively switchable polarization converter for reflection and transmission in the same terahertz frequencies

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A metamaterial-based dual-function switchable polarization conversion device working in terahertz frequency regime is proposed and verified by both numerical methods of finite element method and finite difference time domain. Based on phase transition of vanadium dioxide component from dielectric state to metal state, the transmissive–reflective switching function with high polarization conversion ratios (above 90%) simultaneously can be achieved in the same frequency domains (from 5.30 to 10.70 THz). In the meantime, the transmitted–reflective coupling effects and transmitted polarization-sensitive merit can be illustrated by distributions of surface currents and electric fields, respectively. According to the interesting results, the flexible polarization conversion with a switching function shows great potential application prospects in polarization-related communication and switching devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Y. Yuan, Y. Zhao, B. Zong, S. Parolari, Potential key technologies for 6G mobile communications. Sci. China Inf. Sci. 63, 183301 (2020)

    Google Scholar 

  2. S.E. Hosseininejad, K. Rouhi, M. Neshat, R.F. Dana, A.C. Aparicio, S. Abadal, E. Alarcón, Reprogrammable graphene-based metasurface mirror with adaptive focal point for THz imaging. Sci. Rep. 9(1), 1–9 (2019)

    Google Scholar 

  3. J.Y. Xie, X. Zhu, X.F. Zang, Q. Cheng, L. Chen, Y. Zhu, Metamaterial-enhanced terahertz vibrational spectroscopy for thin film detection. Opt. Mater. Express 8(1), 128–135 (2018)

    ADS  Google Scholar 

  4. Z.X. Geng, X. Zhang, Z.Y. Fan, X. Lv, H. Chen, A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci. Rep. 7(1), 1–11 (2017)

    Google Scholar 

  5. K. Kawai, M. Sakamoto, K. Noda, T. Sasaki, N. Kawatsuki, H. Ono, Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry. J. Appl. Phys. 121(1), 013102 (2017)

    ADS  Google Scholar 

  6. Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, X. Xu, Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region. Carbon 119, 305–313 (2017)

    Google Scholar 

  7. Y. Cheng, R. Gong, L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves. Plasmonics 12(4), 1113–1120 (2017)

    Google Scholar 

  8. S. Fang, K. Luan, H.F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, T.J. Cui, Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials. J. Appl. Phys. 121(3), 033103 (2017)

    ADS  Google Scholar 

  9. Y. Guo, M. Xiao, S. Fan, Topologically protected complete polarization conversion. Phys. Rev. Lett. 119(16), 167401 (2017)

    ADS  Google Scholar 

  10. H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, F. Martín, Ultra-wideband and broad-angle linear polarization conversion metasurface. J. Appl. Phys. 121(17), 174902 (2017)

    ADS  Google Scholar 

  11. P.C. Wu, W. Zhu, Z.X. Shen, P.H.J. Chong, W. Ser, D.P. Tsai, Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv. Opt. Mater. 5(7), 1600938 (2017)

    Google Scholar 

  12. Y. Jia, Y. Liu, W. Zhang, S. Gong, Ultra-wideband and high-efficiency polarization rotator based on metasurface. Appl. Phys. Lett. 109(5), 051901 (2016)

    ADS  Google Scholar 

  13. R.H. Fan, D. Liu, R.W. Peng, W.B. Shi, H. Jing, X.R. Huang, M. Wang, Broadband integrated polarization rotator using three-layer metallic grating structures. Opt. Express 26(1), 516–524 (2018)

    ADS  Google Scholar 

  14. S. Li, M. Wei, X. Feng, Q. Wang, Q. Xu, Y. Xu, L. Liu, C. Ouyang, W. Zhang, C. Hu, X. Zhang, J. Han, W. Zhang, Polarization-insensitive tunable terahertz polarization rotator. Opt. Express 27(12), 16966–16974 (2019)

    ADS  Google Scholar 

  15. J.M. Hao, Y. Yuan, L.X. Ran, T. Jiang, J.A. Kong, C.T. Chan, L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99(6), 063908 (2007)

    ADS  Google Scholar 

  16. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340(6138), 1304–1307 (2013)

    ADS  Google Scholar 

  17. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, Y. Lin, H. Zhang, Efficient multiband and broadband cross polarization converters based on slotted L-shaped nanoantennas. Opt. Express 22(23), 29143–29151 (2014)

    ADS  Google Scholar 

  18. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, J. Tian, Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt. Lett. 40(13), 3185–3188 (2015)

    ADS  Google Scholar 

  19. P. Xu, S.Y. Wang, W. Geyi, A linear polarization converter with near unity efficiency in microwave regime. J. Appl. Phys. 121(14), 144502 (2017)

    ADS  Google Scholar 

  20. Y. Jiang, L. Wang, J. Wang, C.N. Akwuruoha, W. Cao, Ultrawideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies. Opt. Express 25(22), 27616–27623 (2017)

    ADS  Google Scholar 

  21. G. Xu, F. Yu, G. Kai, F. Shen, H. Zhou, Y. Sun, X. Zhang, Z. Yin, Z. Guo, Tri-band polarization convertor based on the multi-layer metamaterial. Appl. Phys. A 123(10), 654 (2017)

    ADS  Google Scholar 

  22. J. Xu, R. Li, J. Qin, S. Wang, T. Han, Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Opt. Express 26(16), 20913–20919 (2018)

    ADS  Google Scholar 

  23. J. Zhang, J. Tian, S. Xiao, L. Li, Methodology for high purity broadband near-unity THz linear polarization converter and its switching characteristics. IEEE Access 8, 46505–46517 (2020)

    Google Scholar 

  24. Y. Guo, J. Xu, C. Lan, K. Bi, Broadband and high-efficiency linear polarization converter based on reflective metasurface. Eng. Sci. 14, 39–45 (2021)

    Google Scholar 

  25. K. Zhang, Y. Liu, S. Lin, F. Xia, W. Kong, Actively tunable bi-functional metamirror in terahertz band. Opt. Lett. 46(3), 464–467 (2020)

    ADS  Google Scholar 

  26. Z. Jia, L. Huang, J. Su, B. Tang, Tunable electromagnetically induced transparency-like in graphene metasurfaces and its application as a refractive index sensor. J. Lightw. Technol. 39(5), 1544–1549 (2021)

    ADS  Google Scholar 

  27. Y. Ren, T. Zhou, C. Jiang, B. Tang, Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials. Opt. Express 29(5), 7666–7679 (2021)

    ADS  Google Scholar 

  28. M. Liu, E. Plum, H. Li, S. Duan, S. Li, Q. Xu, X. Zhang, C. Zhang, C. Zou, B. Jin, J. Han, W. Zhang, Switchable chiral mirrors. Adv. Opt. Mater 8(15), 2000247 (2020)

    Google Scholar 

  29. M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, W. Zhang, Temperature-controlled asymmetric transmission of electromagnetic waves. Sci. Rep. 9(1), 4097 (2019)

    ADS  Google Scholar 

  30. M. Liu, E. Plum, H. Li, S. Li, Q. Xu, X. Zhang, C. Zhang, C. Zou, B. Jin, J. Han, W. Zhang, Temperature-controlled optical activity and negative refractive index. Adv. Funct. Mater. 31(14), 2010249 (2021)

    Google Scholar 

  31. L. Dai, Y. Zhang, J.F. O’Hara, H. Zhang, Controllable broadband asymmetric transmission of terahertz wave based on Dirac semimetals. Opt. Express 27(24), 35784–35796 (2019)

    ADS  Google Scholar 

  32. T. Liu, Z. Han, J. Duan, S. Xiao, Phase-change metasurfaces for dynamic image display and information encryption. Phys. Rev. Appl. 18(4), 044078 (2022)

    ADS  Google Scholar 

  33. S. Xiao, T. Wang, T. Liu, C. Zhou, X. Jiang, J. Zhang, Active metamaterials and metadevices: a review. J. Phys. D Appl. Phys. 53(50), 503002 (2020)

    Google Scholar 

  34. P.U. Jepsen, B.M. Fischer, A. Thoman, H. Helm, J.Y. Suh, R. Lopez, R.F. Haglund Jr., Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys. Rev. B 74(20), 205103 (2006)

    ADS  Google Scholar 

  35. H. Liu, J. Lu, X.R. Wang, Metamaterials based on the phase transition of VO2. Nanotechnology 29(2), 024002 (2017)

    ADS  Google Scholar 

  36. H. He, X. Shang, L. Xu, J. Zhao, W. Cai, J. Wang, C. Zhao, L. Wang, Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO2. Opt. Express 28(4), 4563–4570 (2020)

    ADS  Google Scholar 

  37. J.X. Zhao, J.L. Song, Y. Zhou, Y.C. Liu, J.H. Zhou, Switching between the functions of half-wave plate and quarter-wave plate simply by using a vanadium dioxide film in a terahertz metamaterial. Chin. Phys. Lett. 37(6), 064204 (2020)

    ADS  Google Scholar 

  38. H. Zhang, C. Yang, M. Liu, Y. Zhang, Dual-function tuneable asymmetric transmission and polarization converter in terahertz region. Results Phys. 25, 104242 (2021)

    Google Scholar 

  39. Y. Ren, B. Tang, Switchable multi-functional VO2-integrated metamaterial devices in the terahertz region. J. Lightw. Technol. 39(18), 5864–5868 (2021)

    ADS  Google Scholar 

  40. T. Maruyama, Y. Ikuta, Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate. J. Mater. Sci. 28(18), 5073–5078 (1993)

    ADS  Google Scholar 

  41. Z. Wang, Y. Ma, M. Li, L. Wu, T. Guo, Y. Zheng, Q. Chen, Y. Fu, A thermal-switchable metamaterial absorber based on the phase-change material of vanadium dioxide. Nanomaterials 12(17), 3000 (2022)

    Google Scholar 

  42. J.C. Hulteen, R.P. Van Duyne, Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Tech. A 13(3), 1553–1558 (1995)

    Google Scholar 

  43. Z. Xiao, F. Lv, W. Li, H. Zou, C. Li, A three-dimensional ultra-broadband and polarization insensitive metamaterial absorber and application for electromagnetic energy harvesting. Wave. Random. Complex. 31(6), 2168–2176 (2021)

    ADS  Google Scholar 

  44. X. Zheng, Z. Xiao, X. Ling, A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics 13(1), 287–291 (2018)

    Google Scholar 

  45. X. Yang, B. Zhang, J. Sheng, An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial. Opt. Quantum Electron. 50(8), 315 (2018)

    Google Scholar 

  46. T.T. Lv, Y.X. Li, H.F. Ma, Z. Zhu, Z.P. Li, C.Y. Guan, J.H. Shi, H. Zhang, T.J. Cui, Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 6(1), 23186 (2016)

    ADS  Google Scholar 

  47. Z. Xiao, H. Zou, X. Zheng, X. Ling, L. Wang, A tunable reflective polarization converter based on hybrid metamaterial. Opt. Quantum Electron. 49(12), 401 (2017)

    Google Scholar 

  48. M. Mutlu, E. Ozbay, A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling. Appl. Phys. Lett. 100(5), 051909 (2012)

    ADS  Google Scholar 

  49. B.X. Wang, Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J. Sel. Top. Quantum Electron. 23(4), 4700107 (2017)

    ADS  Google Scholar 

  50. M. Hentschel, T. Weiss, S. Bagheri, H. Giessen, Babinet to the half: coupling of solid and inverse plasmonic structures. Nano Lett. 13(9), 4428–4433 (2013)

    ADS  Google Scholar 

  51. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7(1), 31–37 (2008)

    ADS  Google Scholar 

  52. X. Huang, D. Yang, S. Yu, L. Guo, L. Guo, H. Yang, Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial. Appl. Phys. B 117(2), 633–638 (2014)

    ADS  Google Scholar 

  53. F. Li, L. Wang, Z. Xiao, M. Chen, Z. Cui, Q. Xu, Asymmetric transmission polarization conversion of chiral metamaterials with controllable switches based on VO2. Opt. Mater. 114, 110667 (2021)

    Google Scholar 

  54. J. Zhou, T. Koschny, M. Kafesaki, E.N. Economou, J.B. Pendry, C.M. Soukoulis, Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95(22), 223902 (2005)

    ADS  Google Scholar 

  55. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 Terahertz. Science 306(5700), 1351–1353 (2004)

    ADS  Google Scholar 

  56. H. Xiong, X.M. Li, Parametric investigation and analysis of an electric-resonator by using LC circuit model. Appl. Comput. Electrom. 35(10), 1113–1118 (2020)

    Google Scholar 

  57. E. Saenz, P.M.T. Ikonen, R. Gonzalo, S.A. Tretyakov, On the definition of effective permittivity and permeability for thin composite layers. J. Appl. Phys. 101(11), 114910 (2007)

    ADS  Google Scholar 

  58. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. A 78(4), 043811 (2008)

    ADS  Google Scholar 

  59. L. Zhou, W.J. Wen, C.T. Chan, P. Sheng, Multiband subwavelength magnetic reflectors based on fractals. Appl. Phys. Lett. 83(16), 3257–3259 (2003)

    ADS  Google Scholar 

  60. J.Y. Yin, X. Wan, Q. Zhang, T.J. Cui, Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles. Sci. Rep. 5(1), 12476 (2015)

    ADS  Google Scholar 

  61. F. Wen, Y. Zhang, S. Gottheim, N.S. King, Y. Zhang, P. Nordlander, N.J. Halas, Charge transfer plasmons: optical frequency conductances and tunable infrared resonances. ACS Nano 9(6), 6428–6435 (2015)

    Google Scholar 

Download references

Funding

This work is supported by Major Science and Technology Project of Anhui Province in China under Grant [202003a05020031], Key research and development plan of Anhui province in China under Grant [202004a05020023], School-level scientific research project of Huainan Normal University under Grant [2021XJYB027], The second batch of Huainan City Guiding Science and Technology Plan Projects in 2021 [3624] and First-class undergraduate talent demonstration and leading base under Grant [2020rcsfjd36].

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding authors

Correspondence to Jia-bing Zhu or Qi-ye Wen.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval

All authors accepted.

Consent to participate

All authors accepted.

Consent for publication

All authors accepted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Fy., Wang, Qc., He, Mx. et al. Actively switchable polarization converter for reflection and transmission in the same terahertz frequencies. Eur. Phys. J. D 77, 82 (2023). https://doi.org/10.1140/epjd/s10053-023-00657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00657-x

Navigation