Skip to main content
Log in

Ultra-broadband asymmetric transmission and linear polarization conversion based on terahertz metamaterials

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a terahertz (THz) metamaterial (MM) is designed to achieve ultra-broadband, highly efficient polarization conversion and asymmetric transmission (AT) for linearly polarized (LP) wave. The MM structure is composed of two orthogonal metallic sub-wavelength grating layers and a sandwiched cross-shaped array layer, in which the orthogonal grating layers are used as polarization filters to enhance AT parameters and the cross-shaped structure functions as the polarization converter. Owing to the coupling between two different cut-wires (CWs) and the excitation of higher-order plasmon mode in the cross-shaped structure, the polarization conversion bandwidth is greatly expanded. Results show that the polarization conversion rate (PCR) of the proposed MM structure can exceed 0.99 from 0.41 to 2.38 THz. The AT parameters are above 0.64 in the range of 0.50–2.41 THz with a relative bandwidth of 131.27%, and the near-perfect AT effect with AT parameter in excess of 0.8 occurs at two bands, from 0.53 to 1.48 THz and from 1.80 to 2.06 THz, with the relative bandwidth of 94.53% and 13.47%, respectively. Comparisons of our results with other published works prove that our proposed MM can provide relatively wider bandwidth and higher AT parameter. Due to the excellent performance, the proposed MM has potential applications in designing THz diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Menzel, C. Rockstuhl, F. Lederer, Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A 82(5), 053811 (2010)

    Article  ADS  Google Scholar 

  2. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, F. Lederer, Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett. 104(25), 253902 (2010)

    Article  ADS  Google Scholar 

  3. Z. Wei, Y. Cao, Y. Fan, X. Yu, H. Li, Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl. Phys. Lett. 99(22), 221907 (2011)

    Article  ADS  Google Scholar 

  4. M. Kang, J. Chen, H.-X. Cui, Y. Li, H.-T. Wang, Asymmetric transmission for linearly polarized electromagnetic radiation. Opt. Express 19(9), 8347 (2011)

    Article  ADS  Google Scholar 

  5. C. Huang, Y. Feng, J. Zhao, Z. Wang, T. Jiang, Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Phys. Rev. B 85(19), 195131 (2012)

    Article  ADS  Google Scholar 

  6. S.-Y. Yu, H.-J. Zhang, J.-B. Yu, C. Wang, L.-N. Sun, W.-D. Shi, Bifunctional magnetic−optical nanocomposites: grafting lanthanide complex onto core−shell magnetic silica nanoarchitecture. Langmuir 23(14), 7836–7840 (2007)

    Article  Google Scholar 

  7. M. Tokman, Z. Long, S. AlMutairi, Y. Wang, V. Vdovin, M. Belkin, A. Belyanin, Purcell enhancement of the parametric down-conversion in two-dimensional nonlinear materials, arXiv:1801.07227[physics, physics:quant-ph] (2018)

  8. Q. Wang, Y. Yang, X. Ni, Y.-L. Xu, X.-C. Sun, Z.-G. Chen, L. Feng, X. Liu, M.-H. Lu, Y.-F. Chen, Acoustic asymmetric transmission based on time-dependent dynamical scattering. Sci. Rep. 5(1), 10880 (2015)

    Article  ADS  Google Scholar 

  9. V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett. 97(16), 167401 (2006)

    Article  ADS  Google Scholar 

  10. A.M. Shaltout, V.M. Shalaev, M.L. Brongersma, Spatiotemporal light control with active metasurfaces. Science 364(6441), eaat3100 (2019)

    Article  ADS  Google Scholar 

  11. L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, X. Yuan, Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials. Appl. Phys. Lett. 103(2), 021903 (2013)

    Article  ADS  Google Scholar 

  12. L. Wu, Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, X. Yuan, Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Appl. Phys. A 116(2), 643–648 (2014)

    Article  ADS  Google Scholar 

  13. D. Liu, Z. Xiao, X. Ma, Z. Wang, Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking. Appl. Phys. Express 8(5), 052001 (2015)

    Article  ADS  Google Scholar 

  14. J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, Z. Wang, An ultrathin twist-structure polarization transformer based on fish-scale metallic wires. Appl. Phys. Lett. 98(15), 151908 (2011)

    Article  ADS  Google Scholar 

  15. M. Mutlu, A.E. Akosman, A.E. Serebryannikov, E. Ozbay, Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling. Phys. Rev. Lett. 108(21), 213905 (2012)

    Article  ADS  Google Scholar 

  16. A.E. Serebryannikov, M. Beruete, M. Mutlu, E. Ozbay, Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling. Opt. Express 23(10), 13517 (2015)

    Article  ADS  Google Scholar 

  17. J. Han, R. Chen, Dual-band metasurface for broadband asymmetric transmission with high efficiency. J. Appl. Phys. 130(3), 034503 (2021)

    Article  ADS  Google Scholar 

  18. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C.M. Soukoulis, Negative refractive index due to chirality. Phys. Rev. B 79(12), 121104 (2009)

    Article  ADS  Google Scholar 

  19. L. Stephen, N. Yogesh, V. Subramanian, Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial. J. Appl. Phys. 123(3), 033103 (2018)

    Article  ADS  Google Scholar 

  20. F. Long, S. Yu, N. Kou, C. Zhang, Z. Ding, Z. Zhang, Wideband and high-efficiency planar chiral structure design for asymmetric transmission and linear polarization conversion. J. Appl. Phys. 127(2), 023104 (2020)

    Article  ADS  Google Scholar 

  21. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A.K. Azad, R.A. Cheville, F. Lederer, W. Zhang, N.I. Zheludev, Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 80(15), 153104 (2009)

    Article  ADS  Google Scholar 

  22. M. Stolarek, D. Yavorskiy, R. Kotyński, C.J. Zapata-Rodríguez, J. Łusakowski, T. Szoplik, Asymmetric transmission of terahertz radiation through a double grating. Opt. Lett. 38(6), 839 (2013)

    Article  ADS  Google Scholar 

  23. L. Dai, Y. Zhang, J.F. O’Hara, H. Zhang, Controllable broadband asymmetric transmission of terahertz wave based on Dirac semimetals. Opt. Express 27(24), 35784 (2019)

    Article  ADS  Google Scholar 

  24. J. Zhao, J. Song, T. Xu, T. Yang, J. Zhou, Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface. Opt. Express 27(7), 9773 (2019)

    Article  ADS  Google Scholar 

  25. Y. Cheng, R. Gong, L. Wu, Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves. Plasmonics 12(4), 1113–1120 (2017)

    Article  Google Scholar 

  26. J.-S. Li, F.-Q. Bai, Dual-band terahertz polarization converter with high-efficiency asymmetric transmission. Opt. Mater. Express 10(8), 1853 (2020)

    Article  ADS  Google Scholar 

  27. W. Pan, Q. Chen, Y. Ma, X. Wang, X. Ren, Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement. Opt. Commun. 459, 124901 (2020)

    Article  Google Scholar 

  28. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.-T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340(6138), 1304 (2013)

    Article  ADS  Google Scholar 

  29. D. Liu, M. Li, X. Zhai, L. Yao, J. Dong, Enhanced asymmetric transmission due to Fabry-Perot-like cavity. Opt. Express 22(10), 11707 (2014)

    Article  ADS  Google Scholar 

  30. Z. Xiao, D. Liu, X. Ma, Z. Wang, Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators. Opt. Express 23(6), 7053 (2015)

    Article  ADS  Google Scholar 

  31. P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Y. Zheng, J. Duan, Z. Yang, Giant circular polarization conversion in layer-by-layer nonchiral metamaterial. J. Opt. Soc. Am. A 30(9), 1714 (2013)

    Article  ADS  Google Scholar 

  32. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng-Ma, T. Jun-Cui, Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial. Appl. Phys. Lett. 102(19), 191905 (2013)

    Article  ADS  Google Scholar 

  33. D. Wu, M. Wang, H. Feng, Z. Xu, Y. Liu, F. Xia, K. Zhang, W. Kong, L. Dong, M. Yun, Independently tunable perfect absorber based on the plasmonic properties in double-layer graphene. Carbon 155, 618–623 (2019)

    Article  Google Scholar 

  34. H. Feng, Z. Xu, K. Li, M. Wang, W. Xie, Q. Luo, B. Chen, W. Kong, M. Yun, Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials. Opt. Express 29(5), 7158 (2021)

    Article  ADS  Google Scholar 

  35. D. Liu, Z. Xiao, X. Ma, L. Wang, K. Xu, J. Tang, Z. Wang, Dual-band asymmetric transmission of chiral metamaterial based on complementary U-shaped structure. Appl. Phys. A 118(3), 787–791 (2015)

    Article  ADS  Google Scholar 

  36. Y. Cheng, H. Luo, F. Chen, X. Mao, R. Gong, Photo-excited switchable broadband linear polarization conversion via asymmetric transmission with complementary chiral metamaterial for terahertz waves. OSA Continuum 2(8), 2391 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, nos. 92150101, 61735010)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. CST calculations and data collection and analysis were done by YZ, WL, XG, XY, XZ, GM; manuscript paper was written by YZ, and revised by ZJ and JY. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaona Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest that are relevant to content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Luan, W., Yan, X. et al. Ultra-broadband asymmetric transmission and linear polarization conversion based on terahertz metamaterials. Appl. Phys. B 128, 156 (2022). https://doi.org/10.1007/s00340-022-07871-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07871-2

Navigation