Skip to main content

Advertisement

Log in

Performance enhancement of the power penalty in DWDM FSO communication using DPPM and OOK modulation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents the design and performance enhancement of the power penalty (PP) in a dense wavelength division multiplexing based on free space optical communication (FSOC) link using digital pulse position modulation (DPPM) and on–off keying (OOK) modulation. Such a system has a high performance, low cost, robust and power efficient, reliable, excessive flexibility, and higher data rate for access networks. The system performance is evaluated for an 8-channel wavelength-division-multiplexing for hybrid fiber FSOC system at 2.5 Gbps on widely accepted modulation schemes under various atmospheric turbulence (AT) regimes conditions. The performance of system is introduced in terms of PP, bit-error rate (BER), transmission distance and the average received optical power. The numerical results shows that the improvement of the PP using DPPM modulation of 0.2–3.0 dB for weak turbulence (WT) regimes for BER of 10−6 and above 20, 25 dB for strong turbulence (ST) regimes are reported for BER of 10−6 and 10−9, as respectively (depending on the AT level). Further, we develop of improvement the PP caused by multiple-access interference about 6.686 dB which is predicted for target BER of 10−9 in WT and 1 dB at target BER of 10−6 in ST when the 8 user are active on the system of optical network units. Additionally, the optical power budget and margin losses of a system are calculated with different link length. The proposed approach of DPPM merges superiority with higher enhancement of PP about 0.8 dB for BER equal 10−9 at FSO link length lfso = 2000 m compared to OOK at 1 dB for WT. An improvement of 2 dB is observed using the DPPM scheme over an OOK due to capability of detect pulses under background noise conditions with increased receiver sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

(Reproduced with permission from Mbah et al. 2016)

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abtahi, M., Lemieux, P., Mathlouthi, W., Rusch, L.A.: Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers. J. Lightw. Technol. 24, 4966–4973 (2006)

    Article  ADS  Google Scholar 

  • Aladeloba, A.O., Phillips, A.J., Woolfson, M.S.: DPPM FSO communication systems impaired by turbulence, pointing error and ASE noise. In: 14th International Conference on Transparent Optical Networks (ICTON), Coventry, UK (2012)

  • Aladeloba, A.O., Phillips, A.J., Woolfson, M.S.: Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems. IET Optoelectron. 6(1), 66–74 (2012a)

    Article  Google Scholar 

  • Aladeloba, A.O., Phillips, A.J., Woolfson, M.S.: Improved bit error rate evaluation for optically preamplified free-space optical communication systems in turbulent atmosphere”. IET Optoelectron. 6(1), 26–33 (2012b)

    Article  Google Scholar 

  • Aladeloba, A.O., Woolfson, M.S., Phillips, A.J.: WDM FSO network with turbulence-accentuated interchannel crosstalk. OSA/IEEE 5(6), 641–651 (2013)

    Google Scholar 

  • Aldibbiat, N.M., Ghassemlooy, Z., McLaughlin, R.: Indoor optical wireless systems employing dual header pulse interval modulation (DH-PIM). Int. J. Commun. Syst. 18(3), 285–305 (2005)

    Article  Google Scholar 

  • Al-Habash, M.A., Andrews, L.C., Phillips, R.L.: Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 40, 1554–1562 (2001)

    Article  ADS  Google Scholar 

  • Andrews, L.C., Phillips, R.L.: Laser Beam PropagationThrough Random Media, 2nd edn. SPIE, Bellingham, WA (2005)

    Book  Google Scholar 

  • Andrews, L.C., Phillips, R.L., Hopen, C.Y.: Laser Beam Scintillation with Applications. SPIE Press, Bellingham, WA (2001)

    Book  Google Scholar 

  • Ansari, N., Zhang, J.: Media Access Control and Resource Allocation for Next Generation Passive Optical Networks. Springer, Berlin (2013)

    Book  Google Scholar 

  • Arnon, S.: Optical wireless communications. In: Driggers, R.G. (ed.) Encyclopedia of Optical Engineering, pp. 1866–1886. Marcel Dekker, Inc., New York (2003)

    Google Scholar 

  • Badar, N., Jha, R.K.: Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma-Gamma fading model. Opt. Quantum Electron. 49, 192 (2017). https://doi.org/10.1007/s11082-017-1025-4

    Article  Google Scholar 

  • Chan, V.W.S.: Free-space optical communications. IEEE/OSA J. Lightw. Technol. 24(12), 4750–4762 (2006)

    Article  ADS  Google Scholar 

  • Chen, C., Yang, H., Jiang, H., Fan, J., Han, C., Ding, Y. (2008) Mitigation of turbulence-induced scintillation noise in free-space optical communication links using Kalman filter. In: IEEE Congress on Image and Signal Processing, China, Hainan, vol. 5, pp. 470–473 (2008)

  • Ciaramella, E., Arimoto, Y., Contestabile, G., Presi, M., D’Errico, A., Guarino, V., Matsumoto, M.: 1.28 terabit∕s (32 × 40 Gbit∕s) WDM transmission system for free space optical communications. IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009)

    Article  Google Scholar 

  • Dar, A.B., Jha, R.K.: Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation. Opt. Quantum Electron. 49, 108 (2017). https://doi.org/10.1007/s11082-017-0944-4

    Article  Google Scholar 

  • Dikmelik, Y., Davidson, F.M.: Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence. Appl. Opt. 44(23), 4946–4952 (2005)

    Article  ADS  Google Scholar 

  • Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications—System and Channel Modelling with MATLAB, 1st edn. CRC Press, London (2013)

    Google Scholar 

  • Gyselings, T., Morthier, G., et al.: Crosstalk analysis of multiwavelength optical cross connects. IEEE J. Lightw. Technol. 14, 1423–1435 (1999)

    Google Scholar 

  • Hirano, A., Miyamoto, Y., Kuwahara, S.: Performances of CSRZ-DPSK and RZ-DPSK in 43-Gbit/s/ch DWDM G.652 single-mode-fiber transmission. In: Optical Fiber Communications Conference, pp. 454–456 (2003)

  • Karp, S., Gagliardi, R.M., Moran, S.E., Stotts, L.B.: Optical Channels: Fibers, Clouds, Water and the Atmosphere. Plenum, New York (1988)

    Book  Google Scholar 

  • Kaushal, H., Jain, V. K., Kar, S.: Free Space Optical Communication, 1st edn. In: Optical Networks. (2017). https://doi.org/10.1007/978-81-322-3691-7

  • Khalighi, M., Schwartz, N., Aitamer, N., Bourennane, S.: Fading reduction by aperture averaging and spatial diversity in optical wireless systems. J. Opt. Commun. Netw. 1(6), 580–593 (2009)

    Article  Google Scholar 

  • Killinger, D.: Free space optics for laser communication through the air. Opt. Photon. News 13(10), 36–42 (2002)

    Article  ADS  Google Scholar 

  • Lee, C.H., Sorin, W.V., Kim, B.Y.: Fiber to the home using a PON infrastructure. J. Lightw. Technol. 24, 4568–4583 (2006)

    Article  ADS  Google Scholar 

  • Majumdar, A.K.: Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2, 345–396 (2005)

    Article  Google Scholar 

  • Manor, H., Arnon, S.: Performance of an optical wireless communication system as a function of wavelength. Appl. Opt. 42(21), 4285–4294 (2003)

    Article  ADS  Google Scholar 

  • Maru, K., Mizumoto, T., Uetsuka, H.: Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers. J. Lightw. Technol. 25(8), 2187–2197 (2007)

    Article  ADS  Google Scholar 

  • Mbah, A.M., Walker, J.G., Phillips, A.J.: Performance evaluation of digital pulse position modulation for wavelength division multiplexing FSO systems impaired by interchannel crosstalk. IET Optoelectron. 8(6), 245–255 (2014)

    Article  Google Scholar 

  • Mbah, A.M., Walker, J.G., Phillips, A.J.: Performance evaluation of turbulence-accentuated interchannel crosstalk for hybrid fibre and free space optical wavelength division multiplexing systems using digital pulse position modulation. IET Optoelectron 10(1), 11–20 (2016)

    Article  Google Scholar 

  • Mbah, A.M., Walker, J.G., Phillips, A.J.: Outage probability of WDM free-space optical systems affected by turbulence-accentuated interchannel crosstalk. J. Phillips IET Optoelectron. 11(3), 91–97 (2017)

    Article  Google Scholar 

  • Monroy, I.T., Tangdiongga, E.: Crosstalk in WDM Communication Networks. Kluwer Academic, Norwell, MA (2002)

    Book  Google Scholar 

  • Ng, B., Ab-Rahman, M.S., Premadi, A., Jumari, K.: Optical power budget and cost analysis in PON-based i-FTTH. Res. J. Inf. Technol. 2, 127–138 (2010)

    Google Scholar 

  • Phillips, A.J.: Power penalty for burst mode reception in the presence of interchannel crosstalk. IET Optoelectron. 1, 127–134 (2007)

    Article  Google Scholar 

  • Phillips, A.J., Cryan, R.A., Senior, J.M.: An optically preamplified intersatellite PPM receiver employing maximum likelihood detection. IEEE Photon. Technol. Lett. 8(5), 691–693 (1996)

    Article  ADS  Google Scholar 

  • Popoola, W.O., Ghassemlooy, Z.: BPSK Subcarrier intensity modulated free-space optical communications in Atmospheric turbulence. J. Lightw. Technol. 27(8), 967–973 (2009)

    Article  ADS  Google Scholar 

  • Ramaswami, R., Sivarajan, K.N.: Optical Networks—A Pratical Perspective, 2nd edn. Academic, London (2002)

    Google Scholar 

  • Shapiro, J.H., Harney, R.C.: Burst-mode atmospheric optical communication. In: Proceedings of National Telecommunication Conference, pp. 27.5.1–27.5.7 (1980)

  • Sibley, M.J.: Optical Communications: Components and Systems, 2nd edn. Macmillan Press Ltd, London (1995)

    Book  Google Scholar 

  • Trinh, P.V., Dang, N.T., Thang, T.C., Pham, A.T.: Performance of all-optical amplify- and-forward WDM/FSO relaying systems over atmospheric dispersive turbulence channels. IEICE Trans. Commun. 99(6), 1255–1264 (2016)

    Article  Google Scholar 

  • Vetelino, F.S., Young, C., Andrews, L., Recolons, J.: Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence. Appl. Opt. 46(11), 2099–2108 (2007)

    Article  ADS  Google Scholar 

  • Yang, L., Song, X., Cheng, J., Holzman, J.F.: Free-Space optical communications over lognormal fading channels using OOK with finite extinction ratios. IEEE Access 4, 574–584 (2016)

    Article  Google Scholar 

  • Yu, C.X., Neilson, D.T.: Diffraction-grating-based (de)multiplexer using image plane transformations. IEEE J. Sel. Top. Quantum Electron. 8(6), 1194–1201 (2002)

    Article  ADS  Google Scholar 

  • Zuo, T.J., Phillips, A.J.: Performance of burst mode receivers for optical digital pulse position modulation in passive optical network application. IET Optoelectron. 3(3), 123–130 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Support from University Mansoura, Faculty of Engineering, Electrical Communication Department is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Eld. Elsayed.

Electronic supplementary material

Appendix

Appendix

1.1 This turbulence accentuated interchannel crosstalk effect is considered for the cases are written as Aladeloba et al. (2013)

1.1.1 The signal with turbulence but the interferer does not

To do so Eqs. (613) are used in an optically preamplified case [gain G, ASE PSD at the amplifier output], the ASE power spectral density (PSD) is \( N_{ \circ \, } \, = 0.5 \, \left( {NFG - 1} \right){\text{ E}} \) where \( G \) and \( NF \) are the OA gain and noise figure, respectively, with no amplifier (G = 1). Then \( P_{R, \, sig} \left( {h_{sig} } \right) = GP_{inst.sig} \left( {h_{sig} } \right) \) where \( P_{inst.sig} \left( {h_{sig} } \right) \) is the instantaneous received signal power and thus \( P_{{\text{int} ,{\text{sig}}}} \left( 1 \right) \) is also the turbulence-free average received power \( \left( {TrblncFrp_{sig} } \right) \) of the input signal at the optical preamplifier. \( P_{{R, \, \text{int} }} = GP_{int} \), is fixed by setting a signal-to-crosstalk ratio \( C_{XT} = {{P_{R,sig} \left( 1 \right)} \mathord{\left/ {\vphantom {{P_{R,sig} \left( 1 \right)} {P_{ int} }}} \right. \kern-0pt} {P_{ int} }} \) where \( P_{ int} \) is also the crosstalk optical signal power.

1.1.2 The interferer experiences turbulence, but not the signal

\( P_{R, \, int} \left( {h_{int} } \right) = GP_{inst,int} \left( {h_{int} } \right) \), where \( P_{inst, \, int} \left( {h_{int} } \right) \) is the instantaneous received interferer power and thus \( P_{R, \, sig} = GP_{sig} \) is fixed by setting a signal-to-crosstalk ratio \( C_{XT} = {{P_{sig} } \mathord{\left/ {\vphantom {{P_{sig} } {P_{R, \, int} \left( 1 \right)}}} \right. \kern-0pt} {P_{R, \, int} \left( 1 \right)}} \), where \( P_{R, \, int} \left( 1 \right) \) is also the turbulence-free average received interferer power \( \left( {TrblncFrp_{\text{int}} } \right) \) and \( P_{sig} \) is the (non-turbulent) optical signal power.

1.2 Algorithms

See Table 7.

Table 7 MATLAB code to calculate the value of (Trb ln cFrP)

1.3 BER comparison of the impact of two crosstalk sources and a single crosstalk source of equivalent power

See Fig. 16.

Fig. 16
figure 16

(Reproduced with permission from Mbah et al. 2014)

BER comparison of the impacts of two crosstalk sources and a single crosstalk source of equivalent power in a turbulent FSO DWDM DPPM system with \( {\text{coding level M}} = 2,l_{fso,int} = 2 0 0 0\, {\text{m}} \) and signal-to-crosstalk ratio \( {\text{L}}_{\text{demux,XT}} \) (eprints.nottingham.ac.uk).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed, E.E., Yousif, B.B. & Alzalabani, M.M. Performance enhancement of the power penalty in DWDM FSO communication using DPPM and OOK modulation. Opt Quant Electron 50, 282 (2018). https://doi.org/10.1007/s11082-018-1508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1508-y

Keywords

Navigation