Skip to main content
Log in

Millimeter waves from frequency generation and optical rectification in quantum dot structure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the form of quantum disks under applied electric field, the second-order nonlinear susceptibility (SONS) in self-assembled quantum dots (QDs) was studied. Nonlinear optical processes results in SONS are discussed, they are: second-harmonic generation (SHG), sum-frequency generation (SFG), difference frequency generation (DFG) and optical rectification (OR). Two types of structures are used the first structure uses the interband transitions in QDs while the second structure uses valence intersubband transitions. SONS relations for SHG, SFG, DFG and OR are derived. A high SONS for the first structure is obtained at long wavelength while a millimeter wavelength is obtained from the second structure which is important in optical communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn, D., Park, S.-H.: Engineering quantum mechanics. Wiley, New Jersey (2011)

    Book  MATH  Google Scholar 

  • Al-Husaini, H., Al-Khursan, A.H., Al-Dabagh, S.Y.: III-N QD lasers. Open Nanosci. J. 3, 1–11 (2009)

    Article  ADS  Google Scholar 

  • Al-Khursan, A.H., Al-Khakani, M.K., Al-Mossawi, K.H.: Third-order non-linear susceptibility in a three-level QD system. Photonics Nanostruct. Fundam. Appl. 7, 153–160 (2009)

    Article  ADS  Google Scholar 

  • Al-Nashy, B., Amin, S.M.M., Al-Khursan, A.H.: Kerr effect in Y-configuration double quantum dot system. J. Opt. Soc. Am. B 31, 1991–1996 (2014a)

    Article  ADS  Google Scholar 

  • Al-Nashy, B., Amin, S.M.M., Al-Khursan, A.H.: Kerr dispersion in Y-configuration quantum dot system. J. Opt. 16, 105205 (2014b)

    Article  ADS  Google Scholar 

  • Baskoutas, S., Paspalakis, E., Terzis, A.F.: Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots. Phys. Rev. B 74, 153306 (2006)

    Article  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic press, London (2003)

    Google Scholar 

  • Brunhes, T., Boucaud, P., Sauvage, S., Glotin, F., Prazeres, R., Ortega, J.-M., Lemaitre, A., Gerard, J.-M.: Midinfrared second-harmonic generation in p-type InAs/GaAs self-assembled quantum dots. Appl. Phys. Lett. 75, 835–837 (1999)

    Article  ADS  Google Scholar 

  • Brunhes, T., Boucaud, P., Sauvage, S., Lemaıtre, A., Gérard, J.-M., Glotin, F., Prazeres, R., Ortega, J.-M.: Infrared second-order optical susceptibility in InAs/GaAs self-assembled quantum dots. Phys. Rev. B 61(8), 5562 (2000)

    Article  ADS  Google Scholar 

  • Byrnes, J.: Advances in Sensing with Security Applications. NATO Secur. Through Sci. Ser. 2, 243–268 (2006)

    Article  Google Scholar 

  • Chang-Hasnain, C.J., Ku, P.C., Kim, J., Chuang, S.L.: Variable optical buffer using slow light in semiconductor nanostructures. Proc. IEEE 91, 1884–1896 (2003)

    Article  Google Scholar 

  • Chansungsan, C., Tsang, L., Chuang, S.L.: Coherent terahertz emission from coupled quantum wells with exciton effects. J. Opt. Soc. Am. B 11, 2508–2518 (1994)

    Article  ADS  Google Scholar 

  • Chen, T., Xie, W., Liang, S.: The nonlinear optical rectification of an ellipsoidal quantum dot with impurity in the presence of an electric field. Phys. E 44, 786–790 (2012)

    Article  Google Scholar 

  • Dupont, E., Wasilewski, Z.R., Liu, H.C.: Terahertz emission in asymmetric quantum wells by frequency mixing of midinfrared waves. IEEE J. Quantum Electron. 42, 1157–1174 (2006)

    Article  ADS  Google Scholar 

  • Duque, C.M., Mora-Ramos, M.E., Duque, C.A.: Effects of hydrostatic pressure and electric field on the nonlinear optical rectification of strongly confined electron–hole pairs in GaAs quantum dots. Phys. E 43, 1002–1006 (2011)

    Article  Google Scholar 

  • Fathololoumi, S., Ban, D., Luo, H., Dupont, E., Laframboise, S.-R., Boucherif, A., Liu, H.-C.: Thermal behavior investigation of terahertz quantum-cascade lasers. IEEE J. Quantum Electron. 44, 1139–1144 (2008)

    Article  ADS  Google Scholar 

  • Flayyih, A.H., Al-Khursan, A.H.: Theory of four wave mixing in quantum dot semiconductor optical amplifiers. J. Phys. D Appl. Phys. 46, 445102 (2013)

    Article  ADS  Google Scholar 

  • Kim, J., Chuang, S.L.: Theoretical and experimental study of optical gain, refractive index change and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J. Quantum Electron. 42, 942–952 (2006)

    Article  ADS  Google Scholar 

  • Kim, J., Laemmlin, M., Meuer, C., Bimberg, D., Eisenstein, G.: Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 44, 658–666 (2008)

    Article  ADS  Google Scholar 

  • Kuwatsuka, H., Ishikaw, H.: Calculation of the second-order optical nonlinear susceptibilities in biased AlxGa1-xAs quantum wells. Phys. Rev. B 50, 5323–5328 (1994)

    Article  ADS  Google Scholar 

  • Li, B., Guo, K., Zhang, C., Zheng, Y.: The second-harmonic generation in parabolic quantum dots in the presence of electric and magnetic fields. Phys. Lett. A 367, 493–497 (2007)

    Article  ADS  Google Scholar 

  • Liu, G., Guo, K., Wu, Q., Wu, J.-H.: Polaron effects on the optical rectification and the second harmonic generation in cylindrical quantum dots with magnetic field”. Superlattices Microstruct. 53, 173–183 (2013)

    Article  ADS  Google Scholar 

  • Minin, I. (ed.): Microwave and Millimeter Wave Technologies: from Photonic Bandgap Devices to Antenna and Applications: Chapter 15: Millimeter-wave Imaging Sensor, M. Sato and K. Mizuno, InTech (2010)

  • Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter wave cellular wireless networks: potentials and challenges. Proc. IEEE 102, 366–385 (2014)

    Article  Google Scholar 

  • Rostami, A., Rasooli, H., Baghban, H.: Terahertz Technology Fundamentals and Applications. Springer, Berlin (2011)

    Google Scholar 

  • Schubert, M., Member, S., Rana, F.: Analysis of terahertz surface emitting quantum-cascade lasers. IEEE J. Quantum Electron. 42, 257–265 (2006)

    Article  ADS  Google Scholar 

  • Shao, S., Guo, K., Zhang, Z., Li, N., Peng, C.: Studies on the second-harmonic generations in cubical quantum dots with applied electric field. Phys. B 406, 393–396 (2011)

    Article  ADS  Google Scholar 

  • Shen, Y.R.: The principles of nonlinear optics. Wiley, New York (1984)

    Google Scholar 

  • Tanvir, H., Rahman, B.M.A., Grattan, K.T.V.: Impact of ghost mode interaction in terahertz quantum cascade lasers. IEEE Photonics J. 3, 926–935 (2011)

    Article  Google Scholar 

  • Tsang, L., Chuang, S.L., Lee, S.M.: Second-order nonlinear optical susceptibility of a quantum well with an applied electric field. Phys. Rev. B 41, 5942–5951 (1990)

    Article  ADS  Google Scholar 

  • Vaseghi, B., Rezaei, G., Azizi, V., Azami, S.M.: Spin–orbit interaction effects on the optical rectification of a cubic quantum dot. Phys. E 44, 1241–1243 (2012)

    Article  Google Scholar 

  • Xie, W.: The nonlinear optical rectification of a confined exciton in a quantum dot. J. Lumin. 131, 943–946 (2011)

    Article  Google Scholar 

  • Zibik, E.A., Grange, T., Carpenter, B.A., Porter, N.E., Ferreira, R., Bastard, G., Winnerl, S., Stehr, D., Helm, M., Liu, H.Y., Skolnickand, M.S., Wilson, L.R.: Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat. Mater. 8, 803–807 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin H. Al-Khursan.

Appendices

Appendix 1 (derivation of SHG in interband transition)

From Eq. (A-5) for u = 2, v = 1, u′ = 3, and n = 1

$$\begin{aligned} \frac{\partial }{\partial t}\rho_{21}^{(2)} & = ( - iw_{21} - \gamma_{21} )\rho_{21}^{(2)} \\ & \quad + \frac{i}{\hbar }\left[ {M_{21} \rho_{11}^{(1)} - \rho_{21}^{(1)} M_{11} + M_{22} \rho_{21}^{(1)} - \rho_{22}^{(1)} M_{21} + M_{23} \rho_{31}^{(1)} - \rho_{23}^{(1)} M_{31} } \right]\tilde{E}(t) \\ \end{aligned}$$
(A-1)

where M31 = zero forbidden transition, and \(\rho_{11}^{(1)} = \rho_{22}^{(1)} = \rho_{31}^{(1)} = 0\)

$$\tilde{E}(t) = E_{s} (2w_{s} )e^{{ - i2w_{s} t}} + E_{p} (2w_{p} )e^{{ - i2w_{p} t}} + c.c.$$
(A-2)
$$\begin{aligned} \rho_{21}^{(2)} (t) & = \rho_{21}^{(2)} (2w_{s} )e^{{ - i2w_{s} t}} \\ & \quad \Rightarrow \frac{\partial }{\partial t}\rho_{21}^{(2)} (t) = \rho_{21}^{(2) \cdot } (2w_{s} )e^{{ - i2w_{s} t}} - i2w_{s} \rho_{21}^{(2)} (2w_{s} )e^{{ - i2w_{s} t}} \\ \end{aligned}$$
(A-3)
$$\begin{aligned} \rho_{21}^{(2) \cdot } (2w_{s} )e^{{ - i2w_{s} t}} - i2w_{s} \rho_{21}^{(2)} (2w_{s} )e^{{ - i2w_{s} t}} & = ( - iw_{21} - \gamma_{21} )\rho_{21}^{(2)} (2w_{s} )e^{{ - i2w_{s} t}} \\ & \quad + \frac{i}{\hbar }\left[ {\rho_{21}^{(1)} (M_{22} - M_{11} )} \right]\tilde{E}(t) \\ \end{aligned}$$
(A-4)

At the steady state

$$\left[ {i\left( {w_{21} - 2w_{s} } \right) + \gamma_{21} } \right]\rho_{21}^{(2)} (w_{s} )e^{{ - i2w_{s} t}} = \frac{i}{\hbar }\left[ {\rho_{21}^{(1)} (M_{22} - M_{11} )E_{s} e^{{ - i2w_{s} t}} } \right]$$
(A-5)
$$\rho_{uv}^{(0)} \, = \,0\,\,\,\,\,for\,\,u\, \ne \,v$$
$$\rho_{21}^{(2)} (2w_{s} ) = \frac{{\rho_{21}^{(1)} (M_{22} - M_{11} )E_{s} }}{{\hbar \left[ {\left( {w_{21} - 2w_{s} } \right) - i\gamma_{21} } \right]}}$$
(A-6)

Similarly,

$$\rho_{21}^{(1)} (2w_{s} ) = \frac{{M_{21} (\rho_{11}^{(0)} - \rho_{22}^{(0)} )E_{s} }}{{\hbar \left[ {\left( {w_{21} - 2w_{s} } \right) - i\gamma_{21} } \right]}}$$
(A-7)

Substituting Eq. (A-7) into (A-6) obtain

$$\rho_{21}^{(2)} (2w_{s} ) = \frac{{M_{21} E_{s}^{2} (\rho_{11}^{(0)} - \rho_{22}^{(0)} )\left( {M_{22} - M_{11} } \right)}}{{\hbar^{2} \left[ {\left( {w_{21} - 2w_{s} } \right) - i\gamma_{21} } \right]^{2} }}$$
(A-8)

Substituting Eq. (A-8) into Eq. (A-7) obtain

$$\varepsilon_{0} \chi^{(2)} (2w_{s} )E_{s} (2w_{s} )e^{{ - i2w_{s} t}} = \frac{N}{V}\left[ {\rho_{21}^{(2)} (2w_{s} )M_{12} e^{{ - i2w_{s} t}} } \right]$$
(A-9)
$$\chi^{(2)} (2w_{s} ) = \frac{{N\mu_{21} \mu_{12} }}{{\hbar^{2} \varepsilon_{0} }}\left\{ {\frac{{(\rho_{11}^{(0)} - \rho_{22}^{(0)} )(\mu_{22} - \mu_{11} )}}{{\left[ {(w_{21} - 2w_{s} ) - i\gamma_{21} } \right]^{2} }}} \right\}$$
(A-10)

Appendix 2: Quantum disk model under applied electric field

Dots are considered as a quantum disks with radius of a and a height of h grown on a wetting layer (WL) in a form of QW with a finite constant potential is assumed for both quantum disk and WL. The Hamiltonian in the cylindrical coordinates (ρ, ϕ, z) is given by

$$H = - \frac{{\hbar^{2} }}{{2m^{*} }}\left[ {\frac{1}{\rho }\frac{\partial }{\partial \rho }\left( {\frac{1}{\rho }\frac{\partial }{\partial \rho }} \right) + \frac{1}{{\rho^{2} }}\frac{{\partial^{2} }}{{\partial \varphi^{2} }} + \frac{{\partial^{2} }}{{\partial z^{2} }}} \right] + V$$
(B-1)

where the effective mass is m * = m * d inside the disk and m * = m * b in the barrier. Similarly, the electric potential is V = V d inside the disk and V = V b in the barrier. Solving the Schrodinger equation under the parabolic-band model gives the wave function of the quantum disk. Each state can be characterized by three integral quantum numbers (nml), where n, m and l correspond to ρ-ϕ (transverse) and z dependence, respectively. An approximate wave function of the quantum disk can be obtained (Kim and Chuang 2006) by solving the well-known problems of the two-dimensional circular potential well in the ρ-ϕ direction. In the ρ-ϕ direction, we have a solution of the form

$$\varPsi (\rho ,\varphi ) = \frac{{e^{im\varphi } }}{{\sqrt {2\pi } }}\left\{ \begin{aligned} C_{1} J_{m} (p\rho )\quad \rho \le a \hfill \\ C_{2} K_{m} (q\rho )\quad \rho \rangle a \hfill \\ \end{aligned} \right.$$
(B-2)

where \(p = \sqrt {2m_{d}^{*} (E_{\rho } - V_{d} )} /\hbar \quad and\quad q = \sqrt {2m_{b}^{*} (V_{b} - E_{\rho } )} /\hbar\). Note that J m () and K m () are the Bessel function of the first kind and the modified Bessel function of the second kind, respectively. Using the boundary condition in which the wave function Ψ and its first derivative, divided by the effective mass, i.e. (1/m *)(/) are continuous to obtain the eigen-equation. The procedure of derivation is described well in Kim and Chuang (2006). In Al-Husaini et al. (2009) the results of the modal are compared with that obtained from tight-binding calculations and are found convenient with it. If the potential in the disk is taken as V d  = 0, the transverse Eigen-energy E ρ is obtained by Kim and Chuang (2006)

$$E_{\rho } = \frac{{\hbar^{2} }}{{2m_{d}^{*} }}\frac{{(pa)^{2} }}{{a^{2} }}$$
(B-3)

Now, we go to treat the energy subbands under the applied electric field, where it is assumed applied along z-direction. Generally, when an electric field is applied to a QW structure as schematically illustrated in Fig. 2, the profile of the potential will be changed. The total potential is given by

$$V(z,F) = V(z,0) - ezF$$
(B-4)

where V(z,0) is the potential profile of the QW without the applied electric field, F is the applied electric field in (V/m), e is the electronic charge and z is the associated spatial coordinate. We choose the origin to be at the center of the well. The Schrodinger equation of the system in the effective-mass approximation under the applied electric field is given by

$$\begin{aligned} - \frac{{\hbar^{2} }}{{2m^{*} }}\frac{{d^{2} }}{{dz^{2} }}\psi (z) + \left| e \right|Fz\psi (z) = E\psi (z)\quad \left| z \right| \le L /2 \hfill \\ - \frac{{\hbar^{2} }}{{2m^{*} }}\frac{{d^{2} }}{{dz^{2} }}\psi (z) + \left( {V_{o} + \left| e \right|Fz} \right)\psi (z) = E\psi (z)\quad \left| z \right| \ge L /2 \hfill \\ \end{aligned}$$
(B-5)

where the potential profile of the QD in the z-direction is given by

$$V(z) = \left\{ {\begin{array}{*{20}c} 0 & {for\,\left| z \right|\, \le } & {L /2} \\ {V_{o} } & {for\,\left| z \right|\, \ge } & {L /2} \\ \end{array} } \right.$$
(B-6)

note that the potential height due to band offset between the QD and the WL is V o  = B eff [E gw  − E gd ] where B eff is the band offset, E gw and E gd are the bandgaps of WL and QD, respectively. The wave function in the QD and WL regions are describes as

$$\varPsi (z) = \left\{ \begin{aligned} C_{3} Ai(\eta_{2} )\quad z > - L /2 \hfill \\ C_{4} Ai(\eta_{1} ) + D_{2} Bi(\eta_{1} )\quad \left| z \right| \le L /2 \hfill \\ C_{5} \left[ {Bi(\eta_{2} ) + iAi(\eta_{2} )} \right]\quad z < - L /2 \hfill \\ \end{aligned} \right.$$
(B-7)

where C 3, C 4, C 5, D 2 and D 3 are constants, Ai and Bi are the homogeneous Airy function. From the properties of Airy function it is clear that Bi(η 2) increases with increasing η 2 and becomes infinity when η 2 goes to infinity. In order to make the wave function well behaved in the entire region, this part is not added in the wave function in the region z > −L/2. Note that,

$$\begin{aligned} \eta_{1} = - \left[ {\frac{{2m^{*} }}{{(e\hbar F)^{2} }}} \right]^{1/3} (E - \left| e \right|Fz) \hfill \\ \eta_{2} = - \left[ {\frac{{2m^{*} }}{{(e\hbar F)^{2} }}} \right]^{1/3} (E - V_{o} - \left| e \right|Fz) \hfill \\ \end{aligned}$$
(B-8)

The required boundary conditions for the coefficients are obtained from the current continuity conditions at the heterojunction as

$$\begin{aligned} \left. {\varPsi (\eta_{1} )} \right|_{{z = z_{o} }} & = \left. {\varPsi (\eta_{2} )} \right|_{{z = z_{o} }} \\ \frac{1}{{m_{b}^{*} }}\left. {\frac{{d\varPsi (\eta_{1} )}}{dz}} \right|_{{z = z_{o} }} & = \frac{1}{{m_{d}^{*} }}\left. {\frac{{d\varPsi (\eta_{2} )}}{dz}} \right|_{{z = z_{o} }} \\ \end{aligned}$$
(B-9)

This results in the determinant,

$$\det \left| {\begin{array}{*{20}c} {Ai(\eta_{1}^{ + } )} & {Bi(\eta_{1}^{ + } )} & { - Ai(\eta_{2}^{ + } )} & 0 \\ {A^{\prime}i(\eta_{1}^{ + } )} & {B^{\prime}i(\eta_{1}^{ + } )} & { - A^{\prime}i(\eta_{2}^{ + } )} & 0 \\ {Ai(\eta_{1}^{ - } )} & {Bi(\eta_{1}^{ - } )} & 0 & { - \left[ {Bi(\eta_{2}^{ - } ) + iAi(\eta_{2}^{ - } )} \right]} \\ {A^{\prime}i(\eta_{1}^{ - } )} & {B^{\prime}i(\eta_{1}^{ - } )} & 0 & { - \left[ {B^{\prime}i(\eta_{2}^{ - } ) + iA^{\prime}i(\eta_{2}^{ - } )} \right]} \\ \end{array} } \right| = 0$$
(B-10)

where η ± 1 and η ± 2 are the values of η 1 and η 2 evaluated at z = L/2 and z = −L/2, respectively. Then, we obtain,

$$\left| \begin{aligned} A_{11} \quad A_{12} \hfill \\ A_{21} \quad A_{22} \hfill \\ \end{aligned} \right| = 0$$
(B-11)

where

$$\begin{aligned} A_{11} = \left\{ {\left[ {A_{i} (\eta_{1} )B^{\prime}_{i} (\eta_{2} ) - \left( {\frac{{m_{b}^{*} }}{{m_{d}^{*} }}} \right)A^{\prime}_{i} (\eta_{1} )B_{i} (\eta_{2} )} \right] + i\left[ {A_{i} (\eta_{1} )A^{\prime}_{i} (\eta_{2} ) - \left( {\frac{{m_{b}^{*} }}{{m_{d}^{*} }}} \right)A^{\prime}_{i} (\eta_{1} )A_{i} (\eta_{2} )} \right]} \right\} \hfill \\ A_{12} = \left\{ {\left[ {B_{i} (\eta_{1} )B^{\prime}_{i} (\eta_{2} ) - \left( {\frac{{m_{b}^{*} }}{{m_{d}^{*} }}} \right)B^{\prime}_{i} (\eta_{1} )B_{i} (\eta_{2} )} \right] + i\left[ {B_{i} (\eta_{1} )A^{\prime}_{i} (\eta_{2} ) - \left( {\frac{{m_{b}^{*} }}{{m_{d}^{*} }}} \right)B^{\prime}_{i} (\eta_{1} )A_{i} (\eta_{2} )} \right]} \right\} \hfill \\ A_{21} = \left\{ {\left[ {A^{\prime}_{i} (\eta_{1} )A_{i} (\eta_{2} ) - \left( {\frac{{m_{b}^{*} }}{{m_{d}^{*} }}} \right)A_{i} (\eta_{1} )A^{\prime}_{i} (\eta_{2} )} \right]} \right\} \hfill \\ A_{22} = - \left\{ {\left[ {A^{\prime}_{i} (\eta_{2} )B_{i} (\eta_{1} ) - \left( {\frac{{m_{b}^{*} }}{{m_{d}^{*} }}} \right)A_{i} (\eta_{2} )B^{\prime}_{i} (\eta_{1} )} \right]} \right\} \hfill \\ \end{aligned}$$
(B-12)

The eigenenergy E z is obtained by solving Eq. (B-12), the total eigenenergy of the quantum disk Ed is approximately the summation of the transverse and longitudinal eigen-energies and is expressed as \(E_{d} \, = \,E_{\rho } \,\, + \,\,E_{z}\). This gives the eigen-energy of the QD structure under applied electric field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M., Noori, F.T.M. & Al-Khursan, A.H. Millimeter waves from frequency generation and optical rectification in quantum dot structure. Opt Quant Electron 48, 15 (2016). https://doi.org/10.1007/s11082-015-0300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0300-5

Keywords

Navigation