Skip to main content

Nonlinear Optics and Saturation Behavior of Quantum Dot Samples Under Continuous Wave Driving

  • Chapter
  • First Online:
Quantum Dot Devices

Abstract

The nonlinear optical response of self-assembled quantum dots (QD) is relevant to the application of QD-based devices in nonlinear optics, all-optical switching, slow light, and self-organization. Theoretical investigations are based on numerical simulations of a spatially and spectrally resolved rate equation model, which takes into account the strong coupling of the quantum dots to the carrier reservoir created by the wetting layer (WL) states. The complex dielectric susceptibility of the ground state is obtained. The saturation is shown to follow a behavior in between the one for a dominantly homogeneously and inhomogeneously broadened medium. Approaches to extract the nonlinear refractive index change by fringe shifts in a cavity or self-lensing are discussed. Experimental work on saturation characteristic of InGa/GaAs quantum dots close to the telecommunication O-band (1240–1280 nm) and of InAlAs/GaAlAs QD at 780 nm is described and the first demonstration of the cw saturation of absorption in room temperature QD samples is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alèn, B., Karrai, K., Warburton, R.J., Bickel, F., Petro, P.M., Martínez-Pastord, J.: Physica E 21, 395 (2004)

    Article  ADS  Google Scholar 

  2. Baier, M.H., Pelucchi, E., Kapon, E., Varoutsis, S., Gallart, M., Robert-Philip, I., Abram, I.: Appl. Phys. Lett. 84, 648 (2004)

    Article  ADS  Google Scholar 

  3. Mowbray, D.J., Skolnick, M.S.: J. Phys. D: Appl. Phys. 38, 2059 (2005)

    Article  ADS  Google Scholar 

  4. Schneider, S., Borri, P., Langbein, W., Woggon, U., Förstner, J., Knorr, A., Sellin, R.L., Ouyang, D., Bimberg, D.: Appl. Phys. Lett. 83, 3668 (2003)

    Article  ADS  Google Scholar 

  5. Sugiyama, Y., Nakata, Y., Muto, S., Futatsugi, T., Yokoyama, N.: IEEE Sel. Top. Quantum Electron. 4, 880 (1998)

    Article  Google Scholar 

  6. Akiyama, T., Kuwatsuka, H., Simoyama, T., Nakata, Y., Mukai, K., Sugawara, M., Wada, O., Ishikawa, H.: Opt. Quantum Electron. 33, 927 (2001)

    Article  Google Scholar 

  7. Nakamura, H., Kanamoto, K., Nakamura, Y., Ohkouchi, S., Ishikawa, H., Asakawa, K.: J. Appl. Phys. 96, 1425 (2004)

    Article  ADS  Google Scholar 

  8. Su, K.W., Lai, H.C., Li, A., Chen, Y.F., Huang, K.F.: Opt. Lett. 30, 1482 (2005)

    Article  ADS  Google Scholar 

  9. Cesari, V., Langbein, W., Borri, P., Rossetti, M., Fiore, A., Mikhrin, S., Krestnikov, I., Kovsh, A.: Appl. Phys. Lett. 90, 201103 (2007)

    Article  ADS  Google Scholar 

  10. Dommers, S., Temnov, V.V., Woggon, U., Gomis, J., Martinez-Pastor, J., Laemmlin, M., Bimberg, D.: Appl. Phys. Lett. 90, 033508 (2007)

    Article  ADS  Google Scholar 

  11. OâDriscoll, I., Piwonski, T., Houlihan, J., Huyet, G., Manning, R.J., Corbett, B.: Appl. Phys. Lett. 91, 263606 (2007)

    Google Scholar 

  12. Pulka, J., Piwonski, T., Huyet, G., Houlihan, J., Barbay, S., Martinez, A., Merghem, K., Lemaître, A., Ramdane, A., Kuszelewicz, R.: IEEE J. Quantum Electron. 47(8), 1094–1100 (2011)

    Google Scholar 

  13. Berg, T.W., Mørk, J., Hvam, J.M.: New J. Phys. 6, 178 (2004)

    Article  ADS  Google Scholar 

  14. Sugawara, M., Ebe, H., Hatori, N., Ishida, M., Arakawa, Y., Akiyama, T., Otsubo, K., Nakata, Y.: Phys. Rev. B 69, 235332 (2004)

    Article  ADS  Google Scholar 

  15. Uskov, A.V., O’Reilly, E., Laemmlin, M., Ledentsov, N.N., Bimberg, D.: Opt. Commun. 248, 211 (2005)

    Article  ADS  Google Scholar 

  16. Meuer, C., Kim, K., Laemmlin, M., Liebich, S., Capua, A., Eisenstein, G., Kovsh, A.R., Mikhrin, S.S., Krestnikov, I.L., Bimberg, D.: Opt. Express 16, 8269 (2008)

    Article  ADS  Google Scholar 

  17. Maas, D.J.H.C., Bellancourt, A.R., Hoffmann, M., Rudin, B., Barbarin, Y., Golling, M., Südmeyer, T., Keller, U.: Opt. Express 16, 18646 (2008)

    Article  ADS  Google Scholar 

  18. Lumb, M.P., Stavrinou, P.N., Clarke, E.M., Murray, R., Leburn, C.G., Jappy, C., Metzger, N.K., Brown, C.T.A., Sibbett, W.: Appl. Phys. B 97, 53 (2009)

    Article  ADS  Google Scholar 

  19. Piwonski, T., Pulka, J., Madden, G., Huyet, G., Houlihan, J., Viktorov, E.A., Erneux, T., Mandel, P.: Appl. Phys. Lett. 94, 123504 (2009)

    Article  ADS  Google Scholar 

  20. Wu, F., Tian, W., Chen, W., Zhang, G., Zhao, G., Cao, S., Xie, W.: J. Mod. Opt. 56, 1868–1873 (2009)

    Article  ADS  MATH  Google Scholar 

  21. Dancus, I., Vlad, V.I., Petris, A., Gaponik, N., Lesnyak, V., Eychmüller, A.: Opt. Lett. 35, 1079 (2010)

    Article  Google Scholar 

  22. Barbay, S., Koehler, J., Kuszelewicz, R., Maggipinto, T., Perrini, I.M., Brambilla, M.: IEEE J. Quantum Electron. 39, 245 (2003)

    Article  ADS  Google Scholar 

  23. Perrini, I.M., Barbay, S., Maggipinto, T., Brambilla, M., Kuszelewicz, R.: Appl. Phys. B 81, 905 (2005)

    Article  ADS  Google Scholar 

  24. Brambilla, M., Maggipinto, T., Perrini, I.M., Barbay, S., Kuszelewicz, R.: Chaos 17, 037119 (2007)

    Article  ADS  Google Scholar 

  25. Tierno, A., Ackemann, T., Maggipinto, T., Brambilla, M.: Phys. Rev. B 80, 035314 (2009)

    Article  ADS  Google Scholar 

  26. Su, H., Chuang, S.: Opt. Lett. 31, 271 (2006)

    Article  ADS  Google Scholar 

  27. Akhmediev, N., Ankiewicz, A. (eds.): Dissipative Solitons. In: Lecture Notes in Physics, vol. 661. Springer, Berlin (2005)

    Google Scholar 

  28. Ackemann, T., Oppo, G.L., Firth, W.J.: Adv. At. Mol. Opt. Phy. 57, 323 (2009)

    Article  Google Scholar 

  29. Kuszelewicz, R., Barbay, S., Tissoni, G., Almuneau, G.: Eur. Phys. J. D 59, 1 (2010)

    Article  ADS  Google Scholar 

  30. Barland, S., Tredicce, J.R., Brambilla, M., Lugiato, L.A., Balle, S., Giudici, M., Maggipinto, T., Spinelli, L., Tissoni, G., Knödel, T., Miller, M., Jäger, R.: Nature 419, 699 (2002)

    Article  ADS  Google Scholar 

  31. Ackemann, T., Firth, W.J.: Dissipative solitons. In: Akhmediev N., Ankiewicz A. (eds.) Lecture Notes in Physics, vol. 661, pp. 55–100. Springer, Berlin (2005)

    Google Scholar 

  32. Pedaci, F., Barland, S., Caboche, E., Genevet, P., Giudici, M., Tredicce, J.R., Ackemann, T., Scroggie, A.J., Firth, W.J., Oppo, G.L., Tissoni, G., Jäger, R.: Appl. Phys. Lett. 92, 011101 (2008)

    Article  ADS  Google Scholar 

  33. Taranenko, V.B., Slekys, G., Weiss, C.: Dissipative solitons. In: Akhmediev N., Ankiewicz A. (eds.) Lecture Notes in Physics, pp. 131–160. Springer, New York (2005)

    Google Scholar 

  34. Henry, C.H.: IEEE J. Quantum Electron. 18, 259 (1982)

    Article  ADS  Google Scholar 

  35. Smowton, P.M., Pearce, E.J., Schneider, H.C., Chow, W.W., Hopkinson, M.: Appl. Phys. Lett. 81, 3251 (2002)

    Article  ADS  Google Scholar 

  36. Xu, Z., Birkedal, D., Juhl, M., Hvam, J.M.: Appl. Phys. Lett. 85, 3259 (2004)

    Article  ADS  Google Scholar 

  37. Ribbat, C., Selin, R.L., Kaiander, I., Hopfer, F., Ledentsov, N.N., Bimberg, D., Kovsh, A.R., Ustinov, V.M., Zhukov, A.E., Maximov, M.V.: Appl. Phys. Lett. 82, 952 (2003)

    Article  ADS  Google Scholar 

  38. Schneider, S., Borri, P., Langbein, W., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: IEEE J. Quantum Electron. 40, 1423 (2004)

    Article  ADS  Google Scholar 

  39. Melnik, S., Huyet, G., Uskov, A.V.: Opt. Exp. 14, 2950 (2006)

    Article  ADS  Google Scholar 

  40. Hegarty, S.P., Corbett, B., McInerney, J.G., Huyet, G.: Electron. Lett. 41, 416 (2005)

    Article  Google Scholar 

  41. Tierno, A., Ackemann, T., Leburn, C.G., Brown, C.T.A.: Appl. Phys. Lett. 97, 231104 (2010)

    Article  ADS  Google Scholar 

  42. Kuszelewicz, R., Benoit, J.M., Barbay, S., Lemaître, A., Patriarche, G., Meunier, K., Tierno, A., Ackemann, T.: J. Appl. Phys. 111, 043107 (2012)

    Google Scholar 

  43. Paillard, M., Marie, X., Renucci, P., Amand, T., Jbeli, A., Gérard, J.M.: Phys. Rev. Lett. 86, 1634 (2001)

    Article  ADS  Google Scholar 

  44. Tsitsishvili, E., Baltz, R.V., Kalt, H.: Phys. Rev. B 66, 161405(R) (2002)

    Article  ADS  Google Scholar 

  45. Uskov, A.V., Boucher, Y., Le Bihan, J., McInerney, J.: Appl. Phys. Lett. 73, 1499 (1998)

    Article  ADS  Google Scholar 

  46. Markus, A., Chen, J.X., Gauthier-Lafaye, O., Provost, J.G., Paranthoen, C., Fiore, A.: IEEE Sel. Top. Quantum Electron. 9, 1308 (2003)

    Article  Google Scholar 

  47. Viktorov, E.A., Mandel, P., Tanguy, Y., Houlihan, J., Huyet, G.: Appl. Phys. Lett. 87, 053113 (2005)

    Article  ADS  Google Scholar 

  48. Brambilla, M., Lugiato, L.A., Prati, F., Spinelli, L., Firth, W.J.: Phys. Rev. Lett. 79, 2042 (1997)

    Article  ADS  Google Scholar 

  49. Spinelli, L., Tissoni, G., Brambilla, M., Prati, F., Lugiato, L.A.: Phys. Rev. A 58, 2542 (1998)

    Article  ADS  Google Scholar 

  50. Kovsh, A.R., Maleev, N.A., Zhukov, A.E., Mikhrin, S.S., Vasilâev, A.P., Shernyakov, Y.M., Maximov, M.V., Livshits, D.A., Ustinov, V.M., Alferov, Z.I., Ledentsov, N.N., Bimberg, D.: Electron. Lett. 38, 1104 (2002)

    Article  Google Scholar 

  51. Zhukov, A.E., Kovsh, A.R., Mikhrin, S.S., Vasil’ev, A.P., Semenova, E.S., Maleev, N.A., Ustinov, V.M., Kulagina, M.M., Nikitina, E.V., Soshnikov, I.P., Shernyakov, Y.M., Livshits, D.A., Kryjapovskykaya, N.V., Sizov, D.S., Maximov, M.V., Tsatsul’nikov, A.F., Ledentsov, N.N.,  , B.D., Alferov, Z.I.: Physica E 17, 589 (2003)

    Article  ADS  Google Scholar 

  52. Borri, P., Langbein, W., Mørk, J., Hvam, J.M., Heinrichsdorff, F., Mao, M.H., Bimberg, D.: Phys. Rev. B 60, 7784 (2004)

    Article  ADS  Google Scholar 

  53. Yariv, A.: Quantum Electronics. 3rd edn. John Wiley & Sons, New York (1988)

    Google Scholar 

  54. Sugawara, M., Mukai, K., Nakata, Y.: Appl. Phys. Lett. 74, 1561 (1999)

    Article  ADS  Google Scholar 

  55. Capua, A., Mikhelashvili, V., Eisenstein, G., Reithmaier, J.P., Somers, A., Forchel, A., Calligaro, M., Parillaud, O., Krakowski, M.: Opt. Express 16, 2141–2146 (2008)

    Article  ADS  Google Scholar 

  56. Thylén, L.: Opt. Quantum Electron. 15, 433 (1983)

    Article  ADS  Google Scholar 

  57. Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., Stryland, E.W.V.: IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  58. Siegman, A.E.: Lasers. University Science Books, Mill Valley, California (1986)

    Google Scholar 

  59. Ackemann, T., Scholz, T., Vorgerd, C., Nalik, J., Hoffer, L.M., Lippi, G.L.: Opt. Commun. 147, 411 (1998)

    Article  ADS  Google Scholar 

  60. Labeyrie, G., Ackemann, T., Klappauf, B., Pesch, M., Lippi, G.L., Kaiser, R.: Eur. Phys. J. D 22, 473 (2003)

    Article  ADS  Google Scholar 

  61. Tanguy, Y., Ackemann, T., Firth, W.J., Jäger, R.: Phys. Rev. Lett. 100, 013907 (2008)

    Article  ADS  Google Scholar 

  62. Gioannini, M., Sevega, A., Montrosset, V.: Opt. Quantum Electron. 38, 381 (2006)

    Article  Google Scholar 

  63. Tissoni, G., Spinelli, L., Lugiato, L.A., Brambilla, M.: In: Proceedings of SPIE, vol. 4283, p. 577 (2001)

    Google Scholar 

  64. Schneider, H.C., Chow, W.W., Koch, S.W.: Phys. Rev. B 64, 115315 (2001)

    Article  ADS  Google Scholar 

  65. Schneider, H.C., Chow, W.W., Koch, S.W.: Phys. Rev. B 66, 041310(R) (2002)

    ADS  Google Scholar 

  66. Wong, H.C., Ren, G.B., Rorison, J.M.: Opt. Quantum Electron. 38, 395 (2006)

    Article  Google Scholar 

  67. Lagatsky, A.A., Leburn, C.G., Brown, C.T.A., Sibbett, W., Zolotovskaya, S., Rafailov, E.U.: Prog. Quantum Electron. 34, 1 (2010)

    Article  ADS  Google Scholar 

  68. Marzin, J.Y., Gérard, J.M., Izraël, A., Barrier, D.: Phys. Rev. Lett. 94, 716 (1994)

    Article  ADS  Google Scholar 

  69. Leon, R., Fafard, S., Leonard, D., Merz, J.L., Petroff, P.M.: Appl. Phys. Lett. 67, 521 (1995)

    Article  ADS  Google Scholar 

  70. Hinzer, K., Hawrylak, P., Korkusinski, M., Fafard, S., Bayer, M., Stern, O., Gorbunov, A., Forchel, A.: Phys. Rev. B 63, 075314 (2001)

    Article  ADS  Google Scholar 

  71. Miller, D.A.B.: IEEE J. Quantum Electron. 17, 306 (1981)

    Article  ADS  Google Scholar 

  72. Wherrett, B.S.: IEEE J. Quantum Electron. 20, 646 (1984)

    Article  ADS  Google Scholar 

  73. Sfez, B.G., Oudar, J.L., Kuszelewicz, R., Pellat, D.: Appl. Phys. Lett. 80, 1163 (1992)

    Article  ADS  Google Scholar 

  74. Adachi, S.: J. Appl. Phys. 58(3), R1 (1985)

    Article  ADS  Google Scholar 

  75. Weiner, J.S., Pearson, D.B., Miller, D.A.B., Chemla, D.S., Sivco, D., Cho, A.Y.: Appl. Phys. Lett. 49, 531 (1986)

    Article  ADS  Google Scholar 

  76. Lee, Y.H., Chavez-Pirson, A., Koch, S.W., Gibbs, H.M., Park, S.H., Morhange, J., Jeffery, A., Peyghambarian, N., Banyai, L., Gossard, A.C., Wiegmann, W.: Phys. Rev. Lett. 57, 2446 (1986)

    Article  ADS  Google Scholar 

  77. Tombling, C., Saitoh, T., Suzuki, Y., Tanaka, H.: Electron. Lett. 27, 1374 (1991)

    Article  Google Scholar 

  78. Miller, D.A.B., Chemla, D.S., Eilenberger, D.J., Smith, P.W., Gossard, A.C., Tsang, W.T.: Appl. Phys. Lett. 41, 679 (1983)

    Article  ADS  Google Scholar 

  79. Takada, K., Tanaka, Y., Matsumoto, T., Ekawa, M., Song, H.Z., Nakata, Y., Yamaguchi, M., Nishi, K., Yamamoto, T., Sugawara, M., Arakawa, Y.: Electron. Lett. 47, 206 (2011)

    Article  Google Scholar 

  80. Kageyama, T., Nishi, K., Yamaguchi, M., Mochida, R., Maeda, Y., Takemasa, K., Yamamoto, T., Sugawara, M., Arakawa, Y.: Extremely high temperature \((220^\circ \hbox{C})\) continuous-wave operation of 1,300 nm-range quantum-dot lasers. In: Paper PDA.1, CLEO-Europe, Munich, (2011)

    Google Scholar 

  81. Amano, T., Sugaya, T., Komori, K.: IEEE Photonics Tech. Lett. 18, 619 (2006)

    Article  ADS  Google Scholar 

  82. Nishi, K., Saito, H., Sugou, S., Lee, J.S.: Appl. Phys. Lett. 74, 1111 (1999)

    Article  ADS  Google Scholar 

  83. Mi, Z., Bhattacharyaa, P.: J. Appl. Phys. 98, 023510 (2005)

    Article  ADS  Google Scholar 

  84. Leifer, K., Pelucchi, E., Watanabe, S., Michelini, F., Dwir, B., Kapon, E.: Appl. Phys. Lett. 91, 081106 (2007)

    Article  ADS  Google Scholar 

  85. Gogneau, N., Le Gratiet, L., Cambril, E., Beaudoin, G., Patriarche, G., Beveratos, A., Hostein, R., Robert-Philip, I., Marzin, J.Y., Sagnes, I.: J. Cryst. Growth 310, 3413 (2008)

    Article  ADS  Google Scholar 

  86. Chia, C.K., Zhang, Y.W., Wong, S.S., Yong, A.M., Chow, S.Y., Chua, S.J., Guo, J.: Appl. Phys. Lett. 90, 161906 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.A. and A.T. were supported by EPSRC project EP/E025021, A.T. gratefully acknowledges current funding of Région Provence Alpes Cote d’Azur (DEB 10-924) and a travel grant from COST action MP0702. M.B. acknowledges partial support from project FIRB PhoCOS project n. RBFR08QIP5. We are grateful to Innolume GmbH for supplying the InAs devices, J.-M. Benoit, A. Lemaître, G. Patriarche, and K. Meunier for supplying the 780 nm devices, T. Maggipinto for supplying part of the numerical code, and R. Martin for computational support. S. Moore and T. Krauss were supplying broad-area samples for preliminary studies, and E. Esposito and G. McConnel gave us the opportunity to perform preliminary measurements in their lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ackemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ackemann, T. et al. (2012). Nonlinear Optics and Saturation Behavior of Quantum Dot Samples Under Continuous Wave Driving. In: Wang, Z. (eds) Quantum Dot Devices. Lecture Notes in Nanoscale Science and Technology, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3570-9_12

Download citation

Publish with us

Policies and ethics