Skip to main content
Log in

Quadrupole interaction induced optical rectification and second harmonic generation in CdSe quantum dots

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Our research focused on exploring the second-order nonlinear susceptibility linked with optical rectification, second harmonic generation, and sum frequency generation in CdSe/ZnSe and CdSe/ZnS quantum dots, which are singly charged with electrons. We investigated these processes through intersublevel quadrupole transitions present in the conduction band. To calculate the confined energy levels in these dots, we used the effective-mass approximation and solved the three-dimensional Schrodinger equation. Our predictions indicate an enhanced nonlinear susceptibility that is approximately three orders of magnitude greater than the bulk CdSe susceptibility. We also observed that the second-order nonlinear processes are dependent on the size of the dot, the surrounding matrix, and the polarization state of the incident photon beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. N.D. Hien, Physica E 145, 115504 (2023). https://doi.org/10.1016/j.physe.2022.115504

    Article  Google Scholar 

  2. N.D. Hien, Micro and Nanostruct. 170, 207372 (2022). https://doi.org/10.1016/j.micrna.2022.207372

    Article  Google Scholar 

  3. N.D. Hien, Eur. Phys. J. B. 95, 192 (2022). https://doi.org/10.1140/epjb/s10051-022-00455-1

    Article  ADS  Google Scholar 

  4. G. Liu, R. Liu, G. Chen, Z. Zhang, K. Guo, L. Lu, Results Phys. 17, 103027 (2020). https://doi.org/10.1016/j.rinp.2020.103027

    Article  Google Scholar 

  5. M. Solaimani, S.M.A. Aleomraninejad, L. Lavaei, Optik 172, 353 (2018). https://doi.org/10.1016/j.ijleo.2018.07.056

    Article  ADS  Google Scholar 

  6. X. Li, C. Chang, Opt. Mater. 131, 112605 (2022). https://doi.org/10.1016/j.optmat.2022.112605

    Article  Google Scholar 

  7. C. Chang, X. Li, Y. Duan, Z. Zhao, L. Zhang, Phys. Scr. 97, 065803 (2022). https://doi.org/10.1088/1402-4896/ac6a20

    Article  ADS  Google Scholar 

  8. N.D. Hien, C.V. Nguyen, N.N. Hieu, S.S. Kubakaddi, C.A. Duque, M.E. Mora-Ramos, Le-Dinh, T.N. Bich, H.V. Phuc, Phys. Rev. 101, 045424 (2020). https://doi.org/10.1103/PhysRevB.101.045424

    Article  ADS  Google Scholar 

  9. R.W. Boyd, Nonlinear Optics, 3rd ed. (Academic/Elsevier, Burlington, 2008).

  10. C. Koos, Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing (Karlsruhe Series in Photonics & Communications, Germany, 2007), Vol. 1.

  11. T. Numai, Fundamentals of Semiconductor Lasers (Springer, New York, 2004).

  12. P. Neogi, B.E. Urban, K. Senthilkumar, S.K. Rajpurohit, P. Jagadeeshwaran, S. Kim, Y. Fujita, A. Neogi, IEEE J. Sel. Top. Quantum Electron. 18, 1451 (2012). https://doi.org/10.1109/JSTQE.2012.2184793

    Article  ADS  Google Scholar 

  13. F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, Analyst 135, 1839 (2010). https://doi.org/10.1039/C0AN00144A

    Article  ADS  Google Scholar 

  14. B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, H.V. Demir, ACS Nano 8, 6599 (2014). https://doi.org/10.1021/nn5022296

    Article  Google Scholar 

  15. G.S. He, K.T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A.I. Ryasnyanskiy, P.N. Prasad, Opt. Express 15, 12818 (2007). https://doi.org/10.1364/OE.15.012818

    Article  ADS  Google Scholar 

  16. I. Fushman, "Ph.D. dissertation, Stanford University (2008)

  17. M. Zielinski, D. Oron, D. Chauvat, J. Zyss, Small 5, 2835 (2009). https://doi.org/10.1002/smll.200900399

    Article  Google Scholar 

  18. Y. R. Shen, The principles of nonlinear optics. Wiley: Hoboken, 1, (2003)

  19. Y.R. Shen, Wave mixing spectroscopy for surface studies. Solid State Commun. 102(2–3), 221 (1997). https://doi.org/10.1016/S0038-1098(96)00726-0

    Article  ADS  Google Scholar 

  20. K.B. Eisenthal, Chem. Rev. 106, 1462 (2006). https://doi.org/10.1021/cr0403685

    Article  Google Scholar 

  21. K.B. Eisenthal, Chem. Rev. 96, 1343 (1996). https://doi.org/10.1021/cr9502211

    Article  Google Scholar 

  22. S. Sauvage, R. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.M. Ortega, J.M. Gerard, Phys. Rev. B 63, 113312 (2001). https://doi.org/10.1103/PhysRevB.63.113312

    Article  ADS  Google Scholar 

  23. C.A. Leatherdale, W.K. Woo, F.V. Mikulec, M.G. Bawendi, J. Phys. Chem. B 106, 7619 (2002). https://doi.org/10.1021/jp025698c

    Article  Google Scholar 

  24. Q. Jin, W. Wu, Z. Zheng, Y. Yan, W. Liu, A. Li, Y. Yang, W. Su, J. Nanopart. Res. 11, 665 (2009). https://doi.org/10.1007/s11051-008-9416-x

    Article  ADS  Google Scholar 

  25. N. Venkatram, D.N. Rao, M.A. Akundi, Opt. Express 13, 867 (2005). https://doi.org/10.1364/OPEX.13.000867

    Article  ADS  Google Scholar 

  26. D. Maikhuri, S.P. Purohit, K.C. Mathur, AIP Adv. 5, 047115 (2015). https://doi.org/10.1063/1.4917494

    Article  ADS  Google Scholar 

  27. M. Jacobsohn, U. Banin, J. Phys. Chem. B 104, 1 (2000). https://doi.org/10.1021/jp9925076

    Article  Google Scholar 

  28. M.J. Eilon, T. Mokari, U. Banin, J. Phys. Chem. B 105, 12726 (2001). https://doi.org/10.1021/jp012577o

    Article  Google Scholar 

  29. C.K.N. Patel, Phys. Rev. Lett. 16, 613 (1966). https://doi.org/10.1103/PhysRevLett.16.613

    Article  ADS  Google Scholar 

  30. G.D. Boyd, E. Buehler, F.G. Storz, Appl. Phys. Lett. 18, 301 (1971). https://doi.org/10.1063/1.1653673

    Article  ADS  Google Scholar 

  31. S.H. Park, M.P. Casey, J. Falk, J. Appl. Phys. 73, 8041 (1993). https://doi.org/10.1063/1.353919

    Article  ADS  Google Scholar 

  32. B. Doughty, Y.Z. Ma, R.W. Shaw, J. Phys. Chem. C 119, 2752 (2015). https://doi.org/10.1021/jp510357p

    Article  Google Scholar 

  33. A.I.L. Efros, A.L. Efros, Semicond. 16, 772 (1982)

    Google Scholar 

  34. L.E. Brus, J. Chem. Phys. 79, 5566 (1983). https://doi.org/10.1063/1.445676

    Article  ADS  Google Scholar 

  35. L.E. Brus, J. Chem. Phys. 80, 4403 (1984). https://doi.org/10.1109/JQE.1986.1073184

    Article  ADS  Google Scholar 

  36. M.G. Burt, J. Phys.: Condens Matt. 4, 6651 (1992). https://doi.org/10.1088/0953-8984/4/32/003

    Article  ADS  Google Scholar 

  37. B.S. Kim, M.A. Islam, L.E. Brus, I.P. Herman, J. Appl. Phys. 89, 8127 (2001). https://doi.org/10.1063/1.1369405

    Article  ADS  Google Scholar 

  38. A. SalmanOgli, A. Rostami, J. Nanopart. Res. 13, 1197 (2011). https://doi.org/10.1007/s11051-010-0112-2

    Article  ADS  Google Scholar 

  39. V.T.R. Kuoppa, Appl. Phys. Lett. 100, 252110 (2012). https://doi.org/10.1063/1.4729764

    Article  ADS  Google Scholar 

  40. D.V. Melnikov, W.B. Fowler, Phys. Rev. B 64, 245320 (2001). https://doi.org/10.1103/PhysRevB.64.245320

    Article  ADS  Google Scholar 

  41. V.A. Singh, L. Kumar, Am. J. Phys. 74, 412 (2006). https://doi.org/10.1119/1.2174031

    Article  ADS  Google Scholar 

  42. Y.B. Yu, S.N. Zhu, K.X. Guo, Solid State Commun. 132, 689 (2004). https://doi.org/10.1016/j.ssc.2004.09.019

    Article  ADS  Google Scholar 

  43. L.Z. En, G.K. Xian, Commun. Theor. Phys. 45, 171 (2006). https://doi.org/10.1088/0253-6102/45/1/035

    Article  ADS  Google Scholar 

  44. M. Shim, P.G. Sionnest, Phys. Rev. B 64, 245342 (2001). https://doi.org/10.1103/PhysRevB.64.245342

    Article  ADS  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Maikhuri.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, K., Maikhuri, D. & Sahai, A. Quadrupole interaction induced optical rectification and second harmonic generation in CdSe quantum dots. Eur. Phys. J. Plus 139, 7 (2024). https://doi.org/10.1140/epjp/s13360-023-04794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04794-5

Navigation