Skip to main content
Log in

Uniform stability for a spatially discrete, subdiffusive Fokker–Planck equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We prove stability estimates for the spatially discrete, Galerkin solution of a fractional Fokker–Planck equation, improving on previous results in several respects. Our main goal is to establish that the stability constants are bounded uniformly in the fractional diffusion exponent α ∈ (0,1). In addition, we account for the presence of an inhomogeneous term and show a stability estimate for the gradient of the Galerkin solution. As a by-product, the proofs of error bounds for a standard finite element approximation are simplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angstmann, C. N., Donnelly, I. C., Henry, B. I., Langlands, T. A. M., Straka, P.: Generalised continuous time random walks, master equations and fractional Fokker–Planck equations. SIAM J. Appl. Math. 75, 1445–1468 (2015). https://doi.org/10.1137/15M1011299

    Article  MathSciNet  Google Scholar 

  2. Chen, H., Stynes, M.: Blow-up of error estimates in time-fractional intial-boundary value problems. IMA J. Numer Anal. https://doi.org/10.1093/imanum/draa015 (2020)

  3. Deng, W.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227(2), 1510–1522 (2007). https://doi.org/10.1016/j.jcp.2007.09.015

    Article  MathSciNet  Google Scholar 

  4. Dixon, J., McKee, S.: Weakly singular Gronwall inequalities. Z.MM Z. Angew. Math. Mech. 66, 535–544 (1986)

    Article  MathSciNet  Google Scholar 

  5. Duong, M.H., Jin, B.: Wasserstein gradient flow formulation of the time-fractional Fokker–Planck equation. arxiv:1908.09055v2(2020)

  6. Henry, B. I., Langlands, T. A. M., Straka, P.: Fractional Fokker–Planck equations for subdiffusion with space- and time-dependent forces. Phys. Rev. Lett. 105(170), 602 (2010). https://doi.org/10.1103/PhysRevLett.105.170602

    Google Scholar 

  7. Huang, C., Le, K. N., Stynes, M.: A new analysis of a numerical method for the time-fractional Fokker–Planck equation with general forcing. IMA J. Numer. Anal. 40, 1217–1240 (2020). https://doi.org/10.1093/imanum/drz006

    Article  MathSciNet  Google Scholar 

  8. Jiang, Y., Xu, X.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62, 783–794 (2019). https://doi.org/10.1007/s11425-017-9179-x

    Article  MathSciNet  Google Scholar 

  9. Jin, B., Li, B., Zhou, Z.: Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping. Numer. Math. 145, 883–913 (2020). https://doi.org/10.1007/s00211-020-01130-2

    Article  MathSciNet  Google Scholar 

  10. Le, K. N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal. 54(3), 1763–1784 (2016). https://doi.org/10.1137/15M1031734

    Article  MathSciNet  Google Scholar 

  11. Le, K. N., McLean, W., Mustapha, K.: A semidiscrete finite element approximation of a time-fractional Fokker–Planck equation with nonsmooth initial data. SIAM J. Sci. Comput. 40(6), A3831–3852 (2018). https://doi.org/10.1137/17M1125261

    Article  MathSciNet  Google Scholar 

  12. Le, K. N., McLean, W., Stynes, M.: Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Comm. Pure. Appl. Anal. 18(5), 2765–2787 (2019). https://doi.org/10.3934/cpaa.2019124

    Article  MathSciNet  Google Scholar 

  13. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010). https://doi.org/10.1017/S1446181111000617

    Article  MathSciNet  Google Scholar 

  14. McLean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34, A3039–3056 (2012). https://doi.org/10.1137/120870505

    Article  MathSciNet  Google Scholar 

  15. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algor. 52, 69–88 (2009). https://doi.org/10.1007/s11075-008-9258-8

    Article  MathSciNet  Google Scholar 

  16. McLean, W., Mustapha, K., Ali, R., Knio, O.: Well-posedness of time-fractional advection-diffusion-reaction equations. Fract. Calc. Appl. Anal. 22, 918–944 (2019). https://doi.org/10.1515/fca-2019-0050

    Article  MathSciNet  Google Scholar 

  17. McLean, W., Mustapha, K., Ali, R., Knio, O. M.: Regularity theory for time-fractional advection-diffusion-reaction equations. Comp. Math. Appl. 79, 947–961 (2020). https://doi.org/10.1016/j.camwa.2019.08.008

    Article  MathSciNet  Google Scholar 

  18. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130, 497–516 (2015). https://doi.org/10.1007/s00211-014-0669-2

    Article  MathSciNet  Google Scholar 

  19. Mustapha, K.: An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes. SIAM J. Numer. Anal. 58, 1319–1338 (2020). https://doi.org/10.1137/19M1260475

    Article  MathSciNet  Google Scholar 

  20. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for time fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013). https://doi.org/10.1137/120880719

    Article  MathSciNet  Google Scholar 

  21. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer (2006)

  22. Yang, Y., Huang, Y., Zhou, Y.: Numerical solutions for solving time fractional Fokker—Planck equations based on spectral collocation methods. J. Comput. Math. 339, 389–404 (2018). https://doi.org/10.1016/j.cam.2017.04.003

    Article  MathSciNet  Google Scholar 

  23. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007). https://doi.org/10.1016/j.jmaa.2006.05.061

    Article  MathSciNet  Google Scholar 

Download references

Funding

The support of KFUPM through the project no. SB191003 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William McLean.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLean, W., Mustapha, K. Uniform stability for a spatially discrete, subdiffusive Fokker–Planck equation. Numer Algor 89, 1441–1463 (2022). https://doi.org/10.1007/s11075-021-01160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01160-3

Keywords

Mathematics Subject Classification (2010)

Navigation