Skip to main content
Log in

A monotone finite volume method for time fractional Fokker-Planck equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We develop a monotone finite volume method for the time fractional Fokker-Planck equations and theoretically prove its unconditional stability. We show that the convergence rate of this method is of order 1 in the space and if the space grid becomes suffciently fine, the convergence rate can be improved to order 2. Numerical results are given to support our theoretical findings. One characteristic of our method is that it has monotone property such that it keeps the nonnegativity of some physical variables such as density, concentration, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman A, Plemmons R. Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press, 1979

    MATH  Google Scholar 

  2. Cao X, Fu J, Huang H. Numerical method for the time fractional Fokker-Planck equation. Adv Appl Math Mech, 2012, 4: 848–863

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen S, Liu F, Zhuang P, et al. Finite difference approximations for the fractional Fokker-Planck equation. Appl Math Model, 2009, 33: 256–273

    Article  MathSciNet  MATH  Google Scholar 

  4. Cottle R, Pang J, Stone R. The Linear Complementarity Problem. New York: Academic Press, 1992

    MATH  Google Scholar 

  5. Deng W. Numerical algorithm for the time fractional Fokker-Planck equation. J Comput Phys, 2007, 227: 1510–1522

    Article  MathSciNet  MATH  Google Scholar 

  6. Fairweather G, Zhang H, Yang X, et al. A backward Euler orthogonal spline collocation method for the time-fractional Fokker-Planck equation. Numer Methods Partial Differential Equations, 2015, 31: 1534–1550

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng L B, Zhuang P, Liu F, et al. Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl Math Comput, 2015, 257: 52–65

    MathSciNet  MATH  Google Scholar 

  8. Hejazi H, Moroney T, Liu F. A finite volume method for solving the two-sided time-space fractional advection-dispersion equation. Cent Eur J Phys, 2013, 11: 1275–1283

    Google Scholar 

  9. Hejazi H, Moroney T, Liu F. Stability and convergence of a finite volume method for the space fractional advection- dispersion equation. J Comput Appl Math, 2014, 255: 684–697

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang Y. A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker- Planck equation. Appl Math Model, 2015, 39: 1163–1171

    Article  MathSciNet  Google Scholar 

  11. Jiang Y, Ma J. High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math, 2011, 235: 3285–3290

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang Y, Ma J. Moving finite element methods for time fractional partial differential equations. Sci China Math, 2013, 56: 1287–1300

    Article  MathSciNet  MATH  Google Scholar 

  13. Karaa S, Mustapha K, Pani A K. Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J Numer Anal, 2017, 37: 945–964

    MathSciNet  MATH  Google Scholar 

  14. Langlands T, Henry B. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J Comput Phys, 2005, 205: 719–736

    Article  MathSciNet  MATH  Google Scholar 

  15. Li X, Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal, 2009, 47: 2108–2131

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin Y, Xu C. Finite difference/spectral spproximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225: 1533–1552

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu F, Zhuang P, Turner I, et al. A new fractionalfinite volume method for solving the fractional diffusion equation. Appl Math Model, 2014, 38: 3871–3878

    Article  MathSciNet  MATH  Google Scholar 

  18. McLean W, Mustapha K. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer Algorithms, 2009, 5: 69–88

    Article  MathSciNet  MATH  Google Scholar 

  19. Metzler R, Barkai E, Klafter J. Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys Rev Lett, 1999, 82: 3563–3567

    Article  Google Scholar 

  20. Metzler R, Klafter J. Lévy meets Boltzmann: Strange initial conditions for Brownian and fractional Fokker-Planck equations. Phys A, 2001, 302: 290–296

    Article  MathSciNet  MATH  Google Scholar 

  21. Mustapha K, McLean M. Piecewise-linear, discontinous Galerkin method for a fractional diffusion equation. Numer Algorithms, 2011, 56: 159–184

    Article  MathSciNet  MATH  Google Scholar 

  22. Oldham K B, Spanier J. The Fractional Calculus. New York: Academic Press, 1974

    MATH  Google Scholar 

  23. Saadatmandi A, Dehghan M, Azizi M. The Sinc-Legendre collocation method for a class of fractional convection- diffusion equations with variable coeffcients. Commun Nonlinear Sci Numer Simul, 2012, 17: 4125–4136

    Article  MathSciNet  MATH  Google Scholar 

  24. So F, Liu K L. A study of the subdiffusive fractional Fokker-Planck equation of bistable systems. Phys A, 2004, 331: 378–390

    Article  MathSciNet  Google Scholar 

  25. Sokolov I M, Blumen A, Klafter J. Linear response in complex systems: CTRW and the fractional Fokker-Planck equations. Phys A, 2001, 302: 268–278

    Article  MATH  Google Scholar 

  26. Versteeg H K, Malalasekera W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. New York: Longman Scientific and Technical, 1995

    Google Scholar 

  27. Vong S, Wang Z. A high order compactfinite difference scheme for time fractional Fokker-Planck equations. Appl Math Lett, 2015, 43: 38–43

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang Q, Turner I, Moroney T, et al. Afinite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations. Appl Math Model, 2014, 38: 3755–3762

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhuang P, Liu F, Anh V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J Numer Anal, 2008, 46: 1079–1095

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhuang P, Liu F, Anh V, et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process. IMA J Numer Math, 2009, 74: 645–667

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11571053, 11671302, 51239001 and 91647118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Xu, X. A monotone finite volume method for time fractional Fokker-Planck equations. Sci. China Math. 62, 783–794 (2019). https://doi.org/10.1007/s11425-017-9179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-017-9179-x

Keywords

MSC

Navigation