Skip to main content
Log in

Differential quadrature method for space-fractional diffusion equations on 2D irregular domains

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by Lévy processes, which are sometimes called super-diffusion equations. In this article, we develop the differential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, E.E., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resour. Res. 28(12), 3293–3307 (1992)

    Article  Google Scholar 

  2. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29(1), 145–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atluri, S.N., Zhu, T.L.: The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25(2-3), 169–179 (2000)

    Article  MATH  Google Scholar 

  4. Bellman, R., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellman, R., Kashef, B., Lee, E.S., Vasudevan, R.: Differential quadrature and splines. Comput. Math. Appl. 1(3), 371–376 (1975)

    Article  MATH  Google Scholar 

  6. Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep. Math. Phys. 72(2), 219–233 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonzani, I.: Solution of nonlinear evolution problems by parallelized collocation-interpolation methods. Comput. Math. Appl. 34(12), 71–79 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT 54(4), 937–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlson, R.E., Foley, T.A.: The parameter R2 in multiquadric interpolation. Comput. Math. Appl. 21(9), 29–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carpinteri, A., Mainardi, F.: Fractals and fractional calculus in continuum mechanics. Springer, Wien (1997)

    Book  MATH  Google Scholar 

  11. del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11(8), 3854–3864 (2004)

    Article  Google Scholar 

  12. Chen, Y.M., Wu, Y.B., Cui, Y.H., Wang, Z.Z., Jin, D.M.: Wavelet method for a class of fractional convection-diffusion equation with variable coefficients. J. Comput. Sci. 1(3), 146–149 (2010)

    Article  Google Scholar 

  13. Chen, Y.P., Lee, J., Eskandarian, A.: Meshless methods in solid mechanics. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Cheng, A.H.D., Golberg, M.A., Kansa, E.J., Zammito, G.: Exponential convergence and H-c multiquadric collocation method for partial differential equations. Numer. Meth. Part. D. E 19(5), 571–594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, R.J., Sun, F.X., Wang, J.F.: Meshless analysis of two-dimensional two-sided space-fractional wave equation based on improved moving least-squares approximation. Int. J. Comput. Math. (2017). https://doi.org/10.1080/00207160.2017.1291933

    Article  MathSciNet  MATH  Google Scholar 

  16. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deng, W.H., Li, B.Y., Tian, W.Y., Zhang, P.W.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul., in press (2007)

  18. Ding, H.F.: General Padé approximation method for time-space fractional diffusion equation. J. Comput. Appl. Math. 299, 221–228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Doha, E.H., Bhrawy, A.H., Baleanu, D., Ezz-Eldien, S.S.: The operational matrix formulation of the Jacobi tau approximation for space fractional diffusion equation. Adv. Differ. Equ. 2014, 231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, N., Wang, H.: A fast finite element method for space-fractional dispersion equations on bounded domains in \(\mathbb {R}^{2}\). SIAM J. Sci. Comput. 37(3), A1614–A1635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elhay, S., Kautsky, J.: Algorithm 655: IQPACK: FORTRAN subroutines for the weights of interpolatory quadratures. Acm. T. Math. Softwar. 13(4), 399–415 (1987)

    Article  MATH  Google Scholar 

  22. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. D. E 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fasshauer, G.E., Zhang, J.G.: On choosing optimal shape parameters for RBF approximation. Numer. Algor. 45(1), 345–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, L.B., Zhuang, P., Liu, F., Turner, I., Anh, V., Li, J.: A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients. Comput. Math. Appl. 73(6), 1155–1171 (2017)

    Article  MathSciNet  Google Scholar 

  25. Gingold, R.A., Monaghan, J.J.: Smooth particle hydrodynamics: theory and applications to non spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  MATH  Google Scholar 

  26. Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional advection-dispersion equation. J. Comput. Appl. Math. 255, 684–697 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. 33(2), 253–265 (1971)

    Article  Google Scholar 

  28. Jia, J.H., Wang, H.: A fast finite volume method for conservative space-fractional diffusion equations in convex domains. J. Comput. Phys. 310, 63–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ju, L.L., Gunzburger, M., Zhao, W.D.: Adaptive finite element methods for elliptic PDEs based on conforming centroidal Voronoi-Delaunay triangulations. SIAM J. Sci. Comput. 28(6), 2023–2053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.: A semi-alternating direction method for a 2-D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252–263 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, G.R., Gu, Y.T.: An introduction to meshfree methods and their programming. Springer, Berlin (2005)

    Google Scholar 

  32. Liu, G.R., Gu, Y.T., Dai, K.Y.: Assessment and applications of point interpolation methods for computational mechanics. Int. J. Numer. Meth. Engng. 59 (10), 1373–1397 (2004)

    Article  MATH  Google Scholar 

  33. Liu, Q., Liu, F., Gu, Y.T., Zhuang, P., Chen, J., Turner, I.: A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Appl. Math. Comput. 256, 930–938 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids. 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luh, L.T.: The shape parameter in the Gaussian function II. Eng. Anal. Bound. Elem. 37(6), 988–993 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9(6), 23–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211(1), 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139(1-4), 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status. Solidi. B 133(1), 425–430 (1986)

    Article  MathSciNet  Google Scholar 

  43. Onate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L.: A finite method in computational mechanics: applications to convective transport and fluid flow. Int. J. Numer. Meth. Engng. 39(22), 3839–3866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pang, G.F., Chen, W., Fu, Z.J.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pang, G.F., Chen, W., Sze, K.Y.: Gauss-Jacobi-type quadrature rules for fractional directional integrals. Comput. Math. Appl. 66(5), 597–607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  47. Qiu, L.L., Deng, W.H., Hesthaven, J.S.: Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes. J. Comput. Phys. 298, 678–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Quan, J.R., Chang, C.T.: New insights in solving distributed system equations by the quadrature method–I. Analysis. Comput. Chem. Eng. 13(7), 779–788 (1989)

    Article  Google Scholar 

  49. Ray, S.S.: Analytical solution for the space fractional diffusion equation by two-step adomian decomposition method. Commun. Nonlinear Sci. Numer. Simulat. 14(4), 1295–1306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ren, R.F., Li, H.B., Jiang, W., Song, M.Y.: An efficient Chebyshev-tau method for solving the space fractional diffusion equations. Appl. Math. Comput. 224, 259–267 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11(2), 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62(3), 1135–1142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sarra, S.A., Sturgill, D.: A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Bound. Elem. 33(11), 1239–1245 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 15(7), 791–798 (1992)

    Article  MATH  Google Scholar 

  55. Sousa, E.: Numerical approximations for fractional diffusion equations via splines. Comput. Math. Appl. 62(3), 938–944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun, F.X., Wang, J.F.: Interpolating element-free Galerkin method for the regularized long wave equation and its error analysis. Appl. Math. Comput. 315, 54–69 (2017)

    MathSciNet  Google Scholar 

  57. Sun, F.X., Wang, J.F., Cheng, Y.M.: An improved interpolating element-free Galerkin method for elastoplasticity via nonsingular weight functions. Int. J. Appl. Mechanics 08(08), 1650,096 (2016)

    Article  Google Scholar 

  58. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84(294), 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer. Algor. 72(1), 195–210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wu, Y.L., Shu, C.: Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli. Comput. Mech. 29(6), 477–485 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Xu, Q.W., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52(1), 405–423 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yang, Z., Yuan, Z., Nie, Y., Wang, J., Zhu, X., Liu, F.: Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains. J. Comput. Phys. 330, 863–883 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yıldırım, A., Koçak, H.: Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Adv. Water Resour. 32(12), 1711–1716 (2009)

    Article  Google Scholar 

  65. Yuan, Z.B., Nie, Y.F., Liu, F., Turner, I., Zhang, G.Y., Gu, Y.T.: An advanced numerical modeling for Riesz space fractional advection–dispersion equations by a meshfree approach. Appl. Math. Model. 40(17), 7816–7829 (2016)

    Article  MathSciNet  Google Scholar 

  66. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zeng, F.H., Liu, F.W., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM. J. Numer. Anal. 52(6), 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhu, X.G., Nie, Y.F., Wang, J.G., Yuan, Z.B.: A numerical approach for the Riesz space-fractional Fisher’ equation in two-dimensions. Int. J. Comput. Math. 94(2), 296–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions. This research was supported by National Natural Science Foundations of China (Nos. 11471262 and 11501450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X.G., Yuan, Z.B., Liu, F. et al. Differential quadrature method for space-fractional diffusion equations on 2D irregular domains. Numer Algor 79, 853–877 (2018). https://doi.org/10.1007/s11075-017-0464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0464-0

Keywords

Mathematics Subject Classification 2010

Navigation