Skip to main content
Log in

A class of RBFs-based DQ methods for the space-fractional diffusion equations on 3D irregular domains

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

High-dimensional space-fractional PDEs are topics of special focus in applied disciplines, but solving them on irregular domains is challenging and deserves particular attention in scientific computing. In response to this issue, we establish a family of differential quadrature (DQ) methods for the space-fractional diffusion equations on 3D irregular domains. The fractional derivatives in space are represented by weighted linear combinations based on the functional values at scattered nodes with their weights determined by using radial basis functions (RBFs) as trial functions. The resulting system of ordinary differential equations (ODEs) are discretized by the weighted average scheme. The presented DQ methods have the virtues which are shared by the classical DQ methods. Several benchmark problems on typical irregular domains are solved to illustrate their advantages in flexibility and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atluri SN, Shen S (2002) The meshless method. Tech Science Press, Encino

    MATH  Google Scholar 

  2. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  3. Atluri SN, Zhu T (2000) New concepts in meshless methods. Int J Numer Methods Eng 47(1–3):537–556

    Article  MathSciNet  MATH  Google Scholar 

  4. Baleanu D, Sajjadi SS, Jajarmi A et al (2019) New features of the fractional Euler–Lagrange equations for a physical system within non-singular derivative operator. Eur Phys J Plus 134(4):181

    Article  Google Scholar 

  5. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Method Appl M 139(1–4):49–74

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34(2):235–238

    Article  MathSciNet  MATH  Google Scholar 

  7. Belytschko T, Krongauz Y, Organ D et al (1996) Meshless methods: an overview and recent developments. Comput Method Appl M 139(1–4):3–47

    Article  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhrawy AH, Baleanu D (2013) A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep Math Phys 72(2):219–233

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruyne BD, Pijls NH, Kalesan B et al (2012) Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001

    Article  Google Scholar 

  11. Bu WP, Tang YF, Yang JY (2014) Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J Comput Phys 276:26–38

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlson RE, Foley TA (1991) The parameter R\(^2\) in multiquadric interpolation. Comput Math Appl 21(9):29–42

    Article  MathSciNet  MATH  Google Scholar 

  13. Çelik C, Duman M (2012) Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J Comput Phys 231(4):1743–1750

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng AHD (2012) Multiquadric and its shape parameter-a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation. Eng Anal Bound Elem 36(2):220–239

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng RJ, Sun FX, Wang JF (2018) Meshless analysis of two-dimensional two-sided space-fractional wave equation based on improved moving least-squares approximation. Int J Comput Math 95(3):540–560

    Article  MathSciNet  MATH  Google Scholar 

  16. Deng WH (2008) Finite element method for the space and time fractional Fokker–Planck equation. SIAM J Numer Anal 47(1):204–226

    Article  MathSciNet  MATH  Google Scholar 

  17. Doha EH, Bhrawy AH, Baleanu D et al (2014) The operational matrix formulation of the Jacobi tau approximation for space fractional diffusion equation. Adv Differ Equ 1:231

    Article  MathSciNet  MATH  Google Scholar 

  18. Du N, Wang H (2015) A fast finite element method for space-fractional dispersion equations on bounded domains in R\(^2\). SIAM J Sci Comput 37(3):A1614–A1635

    Article  MathSciNet  MATH  Google Scholar 

  19. Duarte CA, Oden JT (1996) H-p cloudsan h-p meshless method. Numer Methods Part D E 12(6):673–705

    Article  MATH  Google Scholar 

  20. Elhay S, Kautsky J (1987) Algorithm 655: IQPACK: FORTRAN subroutines for the weights of interpolatory quadratures. Acm T Math Softw 13(4):399–415

    Article  MATH  Google Scholar 

  21. Ervin VJ, Roop JP (2006) Variational formulation for the stationary fractional advection dispersion equation. Numer Methods Part D E 22(3):558–576

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan WP, Liu FW, Jiang XY et al (2017) A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain. Fract Calc Appl Anal 20(2):352–383

    Article  MathSciNet  MATH  Google Scholar 

  23. Fasshauer GE, Zhang JG (2007) On choosing optimal shape parameters for RBF approximation. Numer Algorithms 45(1–4):345–368

    Article  MathSciNet  MATH  Google Scholar 

  24. Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38(157):181–200

    MathSciNet  MATH  Google Scholar 

  25. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  26. Hejazi H, Moroney T, Liu FW (2014) Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J Comput Appl Math 255:684–697

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin BT, Lazarov R, Pasciak J et al (2014) Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J Numer Anal 52(5):2272–2294

    Article  MathSciNet  MATH  Google Scholar 

  28. Jun S, Liu WK, Belytschko T (1998) Explicit reproducing kernel particle methods for large deformation problems. Int J Numer Methods Eng 41(1):137–166

    Article  MATH  Google Scholar 

  29. Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    Article  MathSciNet  MATH  Google Scholar 

  30. Lazopoulos KA (2006) Non-local continuum mechanics and fractional calculus. Mech Res Commun 33(6):753–757

    Article  MathSciNet  MATH  Google Scholar 

  31. Lian YP, Wagner GJ, Liu WK (2017) A meshfree method for the fractional advection-diffusion equation. In: Meshfree methods for partial differential equations VIII. Lecture notes in computational science and engineering, vol 115, pp 53–66

    Chapter  Google Scholar 

  32. Lin Z, Liu FW, Wang DD, Gu YT (2018) Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains. Eng Anal Bound Elem 97:131–143

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu FW, Zhuang PH, Turner I et al (2015) A semi-alternating direction method for a 2-D fractional Fitzhugh–agumo monodomain model on an approximate irregular domain. J Comput Phys 293:252–263

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu J, Fu HF, Wang H et al (2019) A preconditioned fast quadratic spline collocation method for two-sided space-fractional partial differential equations. J Comput Appl Math 360:138–156

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu QQ, Liu FW, Gu YT et al (2015) A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Appl Math Comput 256:930–938

    MathSciNet  MATH  Google Scholar 

  36. Liu QX, Zhuang PH, Liu FW, Lai JJ, Anh V, Chen SZ (2020) An investigation of radial basis functions for fractional derivatives and their applications. Comput Mech 65(2):475–486

    Article  MathSciNet  Google Scholar 

  37. Luan SZ, Lian YP, Ying YP, Tang SQ, Wagner GJ, Liu WK (2017) An enriched finite element method to fractional advection–diffusion equation. Comput Mech 60(2):181–201

    Article  MathSciNet  MATH  Google Scholar 

  38. Meerschaert MM, Scheffler HP, Tadjeran C (2006) Finite difference methods for two-dimensional fractional dispersion equation. J Comput Phys 211(1):249–261

    Article  MathSciNet  MATH  Google Scholar 

  39. Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56(1):80–90

    Article  MathSciNet  MATH  Google Scholar 

  40. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  41. Momani S, Odibat Z, Alawneh A (2008) Variational iteration method for solving the space- and time-fractional KdV equation. Numer Methods Part D E 24(1):262–271

    Article  MathSciNet  MATH  Google Scholar 

  42. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MathSciNet  MATH  Google Scholar 

  43. Pang GF, Chen W, Fu ZJ (2015) Space-fractional advection–dispersion equations by the Kansa method. J Comput Phys 293:280–296

    Article  MathSciNet  MATH  Google Scholar 

  44. Pang GF, Chen W, Sze KY (2013) Gauss–Jacobi-type quadrature rules for fractional directional integrals. Comput Math Appl 66(5):597–607

    Article  MathSciNet  MATH  Google Scholar 

  45. Qiu LL, Deng WH, Hesthaven JS (2015) Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes. J Comput Phys 298:678–694

    Article  MathSciNet  MATH  Google Scholar 

  46. Quan JR, Chang CT (1989) New insights in solving distributed system equations by the quadrature method–II. Numerical experiments. Comput Chem Eng 13(9):1017–1024

    Article  Google Scholar 

  47. Ray SS (2009) Analytical solution for the space fractional diffusion equation by two-step adomian decomposition method. Commun Nonlinear Sci 14(4):1295–1306

    Article  MathSciNet  MATH  Google Scholar 

  48. Saadatmandi A, Dehghan M (2011) A tau approach for solution of the space fractional diffusion equation. Comput Math Appl 62(3):1135–1142

    Article  MathSciNet  MATH  Google Scholar 

  49. Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations. Int J Numer Methods Fl 15(7):791–798

    Article  MATH  Google Scholar 

  50. Sousa E (2011) Numerical approximations for fractional diffusion equations via splines. Comput Math Appl 62(3):938–944

    Article  MathSciNet  MATH  Google Scholar 

  51. Tian WY, Zhou H, Deng WH (2015) A class of second order difference approximations for solving space fractional diffusion equations. Math Comput 84(294):1703–1727

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang H, Du N (2014) Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J Comput Phys 258:305–318

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang LF, Ma YP, Meng ZJ (2014) Haar wavelet method for solving fractional partial differential equations numerically. Appl Math Comput 227:66–76

    MathSciNet  MATH  Google Scholar 

  54. Wu YL, Shu C (2002) Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli. Comput Mech 29(6):477–485

    Article  MathSciNet  MATH  Google Scholar 

  55. Xu QW, Hesthaven JS (2014) Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J Numer Anal 52(1):405–423

    Article  MathSciNet  MATH  Google Scholar 

  56. Yang QQ, Turner I, Moroney T et al (2014) A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations. Appl Math Model 38(15–16):3755–3762

    Article  MathSciNet  MATH  Google Scholar 

  57. Yıldırım A, Koçak H (2009) Homotopy perturbation method for solving the space-time fractional advection–dispersion equation. Adv Water Resour 32(12):1711–1716

    Article  Google Scholar 

  58. Ying YP, Lian YP, Tang SQ, Liu WK (2018) Enriched reproducing kernel particle method for fractional advection–diffusion equation. Acta Mech Sin 34(3):515–527

    Article  MathSciNet  MATH  Google Scholar 

  59. Zayernouri M, Ainsworth M, Karniadakis GE (2015) A unified Petrov–Galerkin spectral method for fractional PDEs. Comput Method Appl M 283:1545–1569

    Article  MathSciNet  MATH  Google Scholar 

  60. Zeng FH, Liu FW, Li CP et al (2014) A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J Numer Anal 52(6):2599–2622

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhong HZ (2004) Spline-based differential quadrature for fourth order differential equations and its application to Kirchhoff plates. Appl Math Model 28(4):353–366

    Article  MATH  Google Scholar 

  62. Zhu XG, Nie YF, Wang JG et al (2017) A numerical approach for the Riesz space-fractional Fisher’equation in two-dimensions. Int J Comput Math 94(2):296–315

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhu XG, Nie YF, Zhang WW (2017) An efficient differential quadrature method for fractional advection–diffusion equation. Nonlinear Dyn 90(3):1807–1827

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhuang PH, Liu FW, Turner I et al (2014) Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation. Appl Math Model 38(15–16):3860–3870

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their constructive suggestions. This research was supported by the Scientific Research Funds of Hunan Provincial Education Department (Nos. 19C1643 and 19B509) and National Natural Science Foundations of China (Nos. 11471262 and 11601432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. G. Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X.G., Nie, Y.F., Ge, Z.H. et al. A class of RBFs-based DQ methods for the space-fractional diffusion equations on 3D irregular domains. Comput Mech 66, 221–238 (2020). https://doi.org/10.1007/s00466-020-01848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01848-8

Keywords

Navigation