Skip to main content
Log in

A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a meshless collocation method is considered to solve the multi-term time fractional diffusion-wave equation in two dimensions. The moving least squares reproducing kernel particle approximation is employed to construct the shape functions for spatial approximation. Also, the Caputo’s time fractional derivatives are approximated by a scheme of order O(τ 3−α), 1< α < 2. Stability and convergence of the proposed scheme are discussed. Some numerical examples are given to confirm the efficiency and reliability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbaszadeh, M., Dehghan, M.: A meshless numerical procedure for solving fractional reaction–subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method. Comput. Math. Appl. 70, 2493–2512 (2015)

    Article  MathSciNet  Google Scholar 

  2. Atanackovic, T.M., Pilipovic, S., Zorica, D.: A diffusion wave equation with two fractional derivatives of different order. J. Phys. A: Math. Theor. 40, 5319–5333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atluri, S.N., Shen, S.: The meshless local petrov-galerkin (mlpg) method. Technical Science Press, Encino, CA (2002)

    MATH  Google Scholar 

  4. Atluri, S.N., Shen, S.: The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method. Adv Comput. Math. 23, 73–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belystchko, T., Liu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)

    Article  MathSciNet  Google Scholar 

  6. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  7. Burrage, K., Hale, N., Kay, D.: An efficient implementation of an implicit FEM scheme for fractional-in-space reaction–diffusion equations. SIAM J. Sci. Comput. 34, 2145–2172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, W., Pang, G.: A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction. J. Comput. Phys. 309, 350–367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear sine–Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 50, 412–434 (2015)

    Article  MathSciNet  Google Scholar 

  10. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Error estimate for the numerical solution of fractional reaction–subdiffusion process based on a meshless method. J. Comput. Appl. Math. 280, 14–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, X.L., Jiang, Y.L.: Analytical solutions for the multi-term time-space fractional advection–diffusion equations with mixed boundary conditions. Nonlin. Anal. RWA. 14, 1026–1033 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duarte, C.A., Oden, J.T.: H-p clouds—an h-p meshless method. Numer. Meth. Partial Diff. Eq. 12, 673–705 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion–wave equation. Appl. Math. Model. 34, 2998–3007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fu, Z.-J., Chen, W., Yang, H.-T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. phys. 235, 52–66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fu, Z.-J., Chen, W., Ling, L.: Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Engng. Anal. Bound. Elem. 57, 37–46 (2015)

    Article  MathSciNet  Google Scholar 

  19. Gao, G., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astr. Soc. 181, 375–389 (1997)

    Article  MATH  Google Scholar 

  21. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous–time finance III: The diffusion limit. In: Mathematical Finance, pp 171–80. Mathematics of Birkhauser, Basel (2001)

    Chapter  Google Scholar 

  22. Gu, Y.T., Zhaung, P., Liu, F.: An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. 56, 303–333 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Han, W., Meng, X.: Error analysis of the reproducing kernel particle method. Comput. Meth. Appl. Mech. Eng. 190, 6157–6181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hilfer, R.: Applications of fractional calculus in physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  25. Jiang, Y., Ma, J.: High-order finite element methods for time fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi–term time fractional diffusion–wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain. J. Math. Anal. Appl. 389, 1117–1127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, H., Liu, F., Meerschaert, M.M., McGough, R.J., Liu, Q.: The fundamental solutions for multi-term modified power law wave equations in a finite domain. Electron. J. Math. Anal. Appl. 1, 1–12 (2013)

    Google Scholar 

  29. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics. Comput. Math. Appl. 19, 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Katsikadelis, J.T.: Numerical solution of multi-term fractional differential equations. J. Appl. Math. Mech. 89, 593–608 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Kelly, J.F., McGough, R.J., Meerschaert, M.M.: Analytical time-domain Green’s functions for power-law media. J. Acoust. Soc. Am. 124, 2861–2872 (2008)

    Article  Google Scholar 

  32. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equation. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  33. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kwon, K.C., Park, S.H., Jiang, B.N., Youn, S.K.: The least-squares meshfree method for solving linear elastic problems. Comput. Mech. 30, 196–211 (2003)

    Article  MATH  Google Scholar 

  35. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Inter. J. Numer. Meth. Flui. 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, W.K., Li, S., Belytschko, T.: Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput. Meth. Appl. Mech. Eng. 143, 113–154 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, S., Liu, W.K.: Moving least square reproducing kernel method part II: Fourier analysis. Comput. Meth. Appl. Mech. Eng. 139, 159–194 (1996)

    Article  MATH  Google Scholar 

  38. Li, S., Liu, W.K.: Meshfree particle methods. Springer, Berlin (2007)

    MATH  Google Scholar 

  39. Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35, 4103–4116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, Q., Gu, Y.T., Zhuang, P., Liu, F., Nie, Y.F.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Liu, Q., Liu, F., Gu, Y.T., Zhuang, P., Chen, J., Turner, I.: A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation. Appl. Math. Comput. 256, 930–938 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Lin, Y., Xu, C.: Finite difference/spectral approximation for the time–fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Luchko, Y.: Some uniqueness and existence results for the initial–boundary–value problems for the generalized time–fractional diffusion equation. Comput. Math Appl. 59, 1766–1772 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time–fractional diffusion equation. J. Math. Anal. Appl. 374, 538–548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Melenk, J.M., Babuska, I.: The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Miller, K.S., Ross, B.: An introduction to fractional calculus and fractional differential equations (1974)

  49. Meerschaert, M.M., Tadjeran, C.: Finite difference approximation for two-sided space–fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Metzler, R., Klafter, J.: Boundary value problems for fractional diffusion equations. Phys. A 278, 107–125 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 301–318 (1992)

    Article  MATH  Google Scholar 

  52. Nigmatullin, R.R.: To the theoretical explanation of the universal response. Phys. Status (B): Basic Res. 123, 739–745 (1984)

    Article  Google Scholar 

  53. Nigmatullin, R.R.: Realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status (B): Basic Res. 133, 425–430 (1986)

    Article  Google Scholar 

  54. Oldham, K.B., Spanier, J.: The fractional calculus: theory and application of differentiation and integration of arbitrary order. Academic Press, New York London (1974)

    MATH  Google Scholar 

  55. Oñate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L., Sacco, C.: A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow. Int. J. Numer. Meth. Eng. 39, 3839–3866 (1996)

    Article  MATH  Google Scholar 

  56. Pedas, A., Tamme, E.: Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 236, 167–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  58. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  59. Saadatmandi, A., Dehghan, M.: A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 62, 1135–1142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Scher, H., Montroll, E.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 24–55 (1975)

    Article  Google Scholar 

  61. Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.F.: Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A: Math. Gen. 28, 6567–6584 (1995)

    Article  MATH  Google Scholar 

  62. Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behaviour of real materials. J. Appl. Mech. 51, 294–298 (1984)

    Article  MATH  Google Scholar 

  65. Wang, S., Zhang, H.: Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Arch. Appl. Mech. 81, 1351–1363 (2011)

    Article  MATH  Google Scholar 

  66. Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time–fractional fourth-order problems. Appl. Math. Model. 38, 1511–1522 (2014)

    Article  MathSciNet  Google Scholar 

  67. Yang, J.Y., Zhao, Y.M., Liu, N., Bu, W.P., Xu, T.L., Tang, Y.F.: An implicit MLS meshless method for 2-D time dependent fractional diffusion–wave equation. Appl. Math. Model. 39, 1229–1240 (2015)

    Article  MathSciNet  Google Scholar 

  68. Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi–term time–space Riesz–Caputo fractional differential equations. Appl. Math. Model. 227, 531–540 (2014)

    MathSciNet  Google Scholar 

  69. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time–fractional subdiffusion equation. SIAM. J. Sci. Comput. 35, A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zeng, F., Liu, F., Li, C.P., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zheng, M., Liu, F., Anh, V., Turner, I.: A high-order spectral method for the multi-term time–fractional diffusion equations. Appl. Math. Model. 40, 4970–4985 (2016)

    Article  MathSciNet  Google Scholar 

  72. Zhuang, P., Gu, Y.T., Liu, F., Turner, I., Yarlagadda, P.K.D.V.: Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int. J. Numer. Meth. Eng. 88, 1346–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element methods for solving a one-dimensional space–fractional Boussinesq equation. Appl. Math Model. 38, 3860–3870 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezvan Salehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, R. A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer Algor 74, 1145–1168 (2017). https://doi.org/10.1007/s11075-016-0190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0190-z

Keywords

Mathematics Subject Classification (2010)

Navigation