Skip to main content
Log in

An implicit RBF meshless approach for time fractional diffusion equations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper aims to develop an implicit meshless approach based on the radial basis function (RBF) for numerical simulation of time fractional diffusion equations. The meshless RBF interpolation is firstly briefed. The discrete equations for two-dimensional time fractional diffusion equation (FDE) are obtained by using the meshless RBF shape functions and the strong-forms of the time FDE. The stability and convergence of this meshless approach are discussed and theoretically proven. Numerical examples with different problem domains and different nodal distributions are studied to validate and investigate accuracy and efficiency of the newly developed meshless approach. It has proven that the present meshless formulation is very effective for modeling and simulation of fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal OP, Machado JAT, Sabatier J (2004) Introduction. Nonlinear Dyn 38: 1–2

    Article  Google Scholar 

  2. Butzer PL, Georges A (2000) An introduction to fractional calculus. World Scientific, Singapore

    Google Scholar 

  3. Kenneth SM, Bertram R (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  4. (2010) Advance in fractional differential equations. Comp Math Appl 59(3): 1047–1376

    MATH  Google Scholar 

  5. Chechkin A, Gonchar VY, Kflafter J, Metzler R (2006) Fundamentals of Lévy fight processes. Adv Chem Phys 133: 436–496

    Google Scholar 

  6. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion a fractional dynamics approach. Phys Rep 339(1): 1–77

    Article  MATH  MathSciNet  Google Scholar 

  7. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37(2): R161–R208

    Article  MATH  MathSciNet  Google Scholar 

  8. Sokolov I, Klafter J, Blumen A (2002) Fractional kinetic equations. Phys Today 55: 48–54

    Article  Google Scholar 

  9. Zaslavsky G (2002) Chao, fractional kinetics, and anomalous transport. Phys Rep 371(1): 461–580

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu F, Zhuang P, Anh V, Turner I, Burrage K (2007) Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput 191: 12–20

    Article  MATH  MathSciNet  Google Scholar 

  11. Meerschaert M, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J comput Appl Math 172: 65–77

    Article  MATH  MathSciNet  Google Scholar 

  12. Ervin VJ, Roop JP (2005) Variational formulation for the stationary fractional advection dispersion equation. Numer Methods Partial Diff Equ 22: 558–576

    Article  MathSciNet  Google Scholar 

  13. Roop JP (2006) Computational aspect of FEM approximation of fractional advection dispersion equation on bounded domains in R2. J Comput Appl Math 193(1): 243–268

    Article  MATH  MathSciNet  Google Scholar 

  14. Ervin VJ, Heuer N, Roop JP (2007) Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J Numer Anal 45: 572–591

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin

    Google Scholar 

  16. Gu YT (2005) Meshfree methods and their comparisons. Int J Comput Methods 2(4): 477–515

    Article  MATH  Google Scholar 

  17. Gingold RA, Moraghan JJ (1977) Smooth particle hydrodynamics: theory and applications to non spherical stars. Monthly Notices Roy Astron Soc 181: 375–389

    MATH  Google Scholar 

  18. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics. Comp Math Appl 19(8/9): 127–145

    Article  MATH  MathSciNet  Google Scholar 

  19. Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C (1996) A finite method in computational mechanics: applications to convective transport and fluid flow. Int J Numer Methods Eng 39: 3839–3866

    Article  MATH  Google Scholar 

  20. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu WK, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20: 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50(4): 937–951

    Article  MATH  Google Scholar 

  23. Liu GR, Gu YT (2004) Assessment and applications of point interpolation methods for computational mechanics. Int J Numer Methods Eng 59(10): 1373–1397

    Article  MATH  MathSciNet  Google Scholar 

  24. Atluri SN, Zhu T (1998) A new meshfree local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22: 117–127

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu GR, Gu YT (2001) A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J Sound Vib 246(1): 29–46

    Article  Google Scholar 

  26. Liu GR, Gu YT (2002) Comparisons of two meshfree local point interpolation methods for structural analyses. Comput Mech 29(2): 107–121

    Article  MATH  Google Scholar 

  27. Mukherjee YX, Mukherjee S (1997) Boundary node method for potential problems. Int J Numer Methods Eng 40: 797–815

    Article  MATH  Google Scholar 

  28. Gu YT, Liu GR (2002) A boundary point interpolation method for stress analysis of solids. Comput Mech 28: 47–54

    Article  MATH  Google Scholar 

  29. Gu YT, Liu GR (2003) A boundary radial point interpolation method (BRPIM) for 2-D structural analyses. Struct Eng Mech 15(5): 535–550

    MathSciNet  Google Scholar 

  30. Liu GR, Zhang GY (2008) Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). Int J Numer Methods Eng 74: 1128–1161

    Article  MATH  Google Scholar 

  31. Liu GR, Gu YT, Dai KY (2004) Assessment and applications of point interpolation methods for computational mechanics. Int J Numer Methods Eng 59(10): 1373–1397

    Article  MATH  Google Scholar 

  32. Liu GR (2009) On G space theory. Int J Comput Methods 6(2): 257–289

    Article  MathSciNet  Google Scholar 

  33. Liu GR (2008) A G space and weakened weak (W2) form for a unified formulation of compatible and incompatible methods, part I–theory and part II–application to solid mechanics problems. Int J Numer Methods Eng 81(9): 1093–1126

    Google Scholar 

  34. Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39: 859–877

    Article  MATH  Google Scholar 

  35. Chen W, Ye L, Sun H (2010) Fractional diffusion equations by the Kansa method. Comput Math Appl 59(5): 1614–1620

    Article  MATH  MathSciNet  Google Scholar 

  36. Gu YT, Zhuang PH, Liu FW (2010) An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. CMES Comput Model Eng Sci 56(3): 303–333

    MathSciNet  Google Scholar 

  37. Zhu T, Atluri SN (1998) A Modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21: 211–222

    Article  MATH  MathSciNet  Google Scholar 

  38. Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comp Phys 225(2): 1533–1552

    Article  MATH  MathSciNet  Google Scholar 

  39. Liu GR (2009) Mesh free methods: moving beyond the finite element method, 2nd edn. CRC Press, USA

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. T. Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Gu, Y.T., Zhuang, P. et al. An implicit RBF meshless approach for time fractional diffusion equations. Comput Mech 48, 1–12 (2011). https://doi.org/10.1007/s00466-011-0573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0573-x

Keywords

Navigation