Skip to main content

Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit

  • Conference paper
Mathematical Finance

Part of the book series: Trends in Mathematics ((TM))

Abstract

A proper transition to the so-called diffusion or hydrodynamic limit is discussed for continuous time random walks. It turns out that the probability density function for the limit process obeys a fractional diffusion equation. The relevance of these results for financial applications is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Scalas, R. Gorenflo and F. MainardiFractional calculus and continuous-time financePhysica A 284(2000), 376–384.

    Article  MathSciNet  Google Scholar 

  2. M. ParkinsonOption pricing: the American putJ. Business 50 (1977), 21–36.

    Article  Google Scholar 

  3. F. Mainardi, M. Raberto, R. Gorenflo and E. ScalasFractional calculus and continuous-time finance II: the waiting-time distributionPhysica A 287 (2000), 468–481.

    Article  Google Scholar 

  4. M. Raberto, E. Scalas, R. Gorenflo and F. MainardiThe waiting-time distribution of LIFFE bond futuresJ. Quantitative Finance (2001), to appear.

    Google Scholar 

  5. E.W. Montroll and G.H. WeissRandom walks on lattices IIJ. Math. Phys. 6 (1965), 167–181.

    Article  MathSciNet  Google Scholar 

  6. A.I. Saichev and G.M. ZaslayskyFractional kinetic equations: solutions and applicationsChaos 7 (1997), 753–764.

    Article  MathSciNet  MATH  Google Scholar 

  7. I.M. Gel’fand and G.E. ShilovGeneralized FunctionsVol. 1, Academic Press, New York, 1964.

    MATH  Google Scholar 

  8. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. TricomiHigher Transcendental FunctionsBateman Project, Vol. 3, McGraw-Hill, New York, 1955. [Ch. 18, pp. 206–227.]

    Google Scholar 

  9. R. Gorenflo and F. MainardiFractional calculus integral and differential equations of fractional order in: A. Carpinteri and F. Mainardi (Editors)Fractals and Fractional Calculus in Continuum Mechanics Springer Verlag, Wien and New York, 1997, pp. 223–276.

    Google Scholar 

  10. F. Mainardi and R. GorenfloOn Mittag-Leffler type functions in fractional evolution processesJ. Comput. & Appl. Mathematics 118 (2000), 283–299.

    Article  MathSciNet  MATH  Google Scholar 

  11. B.V. Gnedenko and A.N. KolmogorovLimit Distributions for Sums of Independent Random VariablesAddison-Wesley, Cambridge, Mass., 1954. [Translated from the Russian edition of 1949]

    Google Scholar 

  12. R. Gorenflo and F. MainardiRandom walk models approximating symmetric space-fractional diffusion processesin: J. ElschnerI. Gohberg and B. Silbermann (Editors)Problems in Mathematical Physics (Siegfried Prössdorf Memorial Volume), Proceedings of the 11-th TMP Conference. Springer Basel AG, Boston-Basel-Berlin, 2000, pp. 120–145.

    Google Scholar 

  13. E. LukacsCharacteristic FunctionsGriffin, London, 1960.

    MATH  Google Scholar 

  14. R. Gorenflo, A. Iskenderov and Yu. LuchkoMapping between solutions of fractional diffusion-wave equationsFractional Calculus and Applied Analysis 3 (2000), 75–86.

    MathSciNet  MATH  Google Scholar 

  15. F. Mainardi, Yu Luchko and G. PagniniThe fundamental solutions of the space-time fractional diffusion equationFractional Calculus and Applied Analysis 4 (2001), to appear

    Google Scholar 

  16. M. CaputoLinear models of dissipation whose Q is almost frequency independent Part IIGeophys. J. R. Astr. Soc. 13 (1967), 529–539.

    Article  Google Scholar 

  17. M. CaputoElasticità e DissipazioneZanichelli, Bologna, 1969. [in Italian]

    Google Scholar 

  18. M. Caputo and F. MainardiLinear models of dissipation in anelastic solidsRiv. Nuovo Cimento (Ser. II) 1 (1971), 161–198.

    Google Scholar 

  19. S.G. Samko, A.A. Kilbas and O.I. MarichevFractional Integrals and Derivatives Theory and ApplicationsGordon and Breach, Amsterdam, 1993. [Original edition in Russian, Nauka i Tekhnika, Minsk, 1987]

    MATH  Google Scholar 

  20. R. Gorenflo and F. MainardiRandom walk models for space-fractional diffusion processesFractional Calculus and Applied Analysis 1 (1998), 167–191.

    MathSciNet  MATH  Google Scholar 

  21. R. Gorenflo and F. MainardiApproximation of Lévy-Feller diffusion by random walkJ. Analysis and its Applications (ZAA) 18 (1999), 231–246.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M. (2001). Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit. In: Kohlmann, M., Tang, S. (eds) Mathematical Finance. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8291-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8291-0_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9506-4

  • Online ISBN: 978-3-0348-8291-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics