Skip to main content
Log in

Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

By using the steepest descent method for Riemann–Hilbert problems introduced by Deift–Zhou (Ann Math 137:295–370, 1993), we derive two asymptotic expansions for the scaled Laguerre polynomial \(L^{(\alpha)}_n(\nu z)\) as n→∞, where ν=4n+2α+2. One expansion holds uniformly in a right half-plane \(\text{Re}\; z\geq \delta_1, 0<\delta_1<1\), which contains the critical point z=1; the other expansion holds uniformly in a left half-plane \(\text{Re}\; z\leq 1-\delta_2, 0<\delta_2<1-\delta_1\), which contains the other critical point z=0. The two half-planes together cover the entire complex z-plane. The critical points z=1 and z=0 correspond, respectively, to the turning point and the singularity of the differential equation satisfied by \(L^{(\alpha)}_n(\nu z)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)

    MATH  Google Scholar 

  2. Baik, J., Kricherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete Orthogonal Polynomials, Asymptotics and Applications. Annals of Mathematics Studies, vol. 164. Princeton University Press, Princeton, NJ (2007)

    MATH  Google Scholar 

  3. Bleher, P., Its, A.: Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model. Ann. Math. 150, 185–266 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bleher, P., Its, A.: Double scaling limit in the random matrix model: the Riemann–Hilbert approach. Comm. Pure Appl. Math. 56, 433–516 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chester, C., Friedman, B., Ursell, F.: An extension of the method of steepest descents. Proc. Camb. Phil. Soc. 53, 599–611 (1957)

    MATH  MathSciNet  Google Scholar 

  6. Copson, E.T.: Asymptotic Expansions. Cambridge Tracts in Math. and Math. Phys. No.55, Cambridge University Press, London (1965)

    Google Scholar 

  7. Dai, D., Wong, R.: Global asymptotics of Krawtchouk polynomials—a Riemann–Hilbert approach. Chin. Ann. Math. Ser. B 28, 1–34 (2007)

    Article  MathSciNet  Google Scholar 

  8. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, No. 3., New York University (1999)

  9. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R.: Asymptotics for polynomials orthogonal with respect to varying exponential weights. Int. Math. Res. Notices 1997(16), 759–782 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52, 1335–1425 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52, 1491–1552 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deift, P., Venakides, S., Zhou, X.: An extension of the steepest descent method for Riemann–Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation. Proc. Natl. Acad. Sci. USA 95(2), 450–454 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the mKdV equation. Ann. Math. 137, 295–370 (1993)

    Article  MathSciNet  Google Scholar 

  14. Deift, P., Zhou, X.: Long-time behavior of the non-focusing nonlinear Schrödinger equation: a case study. New Series: Lectures in Math. Sciences, vol. 5. University of Tokyo (1994)

  15. Deift, P, Zhou, X., Asymptotics for the Painlevé II equation. Comm. Pure Appl. Math. 48, 277–337 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Comm. Math. Phys. 147, 395–430 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frenzen, C.L., Wong, R.: Uniform asymptotic expansions of Laguerre polynomials. SIAM J. Math. Anal. 19, 1232–1248 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gatteschi, L.: Uniform approximations for the zeros of Laguerre polynomials. In: Numerical Mathematics, Proceedings of the International Conference, Singapore 1988. Int. Ser. Numer. Math. 86, 137–148 (1988)

  19. Gatteschi, L.: Asymptotics and bounds for the zeros of Laguerre polynomials: a survey. J. Comput. Appl. Math. 144, 7–27 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gawronski, W., Van Assche, W.: Strong asymptotics for relativistic Hermite polynomials. Rocky Mountain J. Math. 33, 489–524 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Its, A.R., Kapaev, A.A.: The nonlinear steepest descent approach to the asymptotics of the second Painlevé transcendent in the complex domain, Phys. Odyssey 2001. Integrable Models and Beyond (2002)

  22. Kricherbauer, T., McLaughlin, K.T.-R.: Strong asymptotics of polynomials orthogonal with respect to Freud weights. Int. Math. Res. Notices 1999(6), 299–333 (1999)

    Article  Google Scholar 

  23. Kuijlaars, A.B.J.: Riemann–Hilbert analysis for orthogonal polynomials. In: Koelink, E., Van Assche, W. (eds.) Orthogonal Polynomials and Special Functions: Leuven 2002 Lecture Notes in Mathematics, vol. 1817, pp. 167–210. Springer-Verlag, Berlin (2003)

    Chapter  Google Scholar 

  24. Kuijlaars, A.B.J., Martinez-Finkelshtein, A.: Strong asymptotics for Jacobi polynomials with varying nonstandard parameters. J. Anal. Math. 94, 195–234 (2004)

    MATH  MathSciNet  Google Scholar 

  25. Kuijlaars, A.B.J., McLaughlin, K.T.-R.: Riemann–Hilbert analysis for Laguerre polynomials with large negative parameter. Comput. Methods Funct. Theory 1, 205–233 (2001)

    MATH  MathSciNet  Google Scholar 

  26. Kuijlaars, A.B.J., McLaughlin, K.T.-R.: Asymptotic zero behavior of Laguerre polynomials with negative parameter. Constr. Approx. 20, 497–523 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kuijlaars, A.B.J., McLaughlin, K.T.-R.: A Riemann–Hilbert problem for biorthogonal polynomials. J. Comput. Appl. Math. 178, 313–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kuijlaars, A.B.J., McLaughlin, K.T.-R., Van Assche W., Vanlessen, M.: The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on [−1,1]. Adv. Math. 188, 337–398 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Martinez-Finkelshtein, A., McLaughlin, K.T.-R., Saff, E.B.: Szegö orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics. Constr. Approx. 24, 319–363 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Martinez-Finkelshtein, A., McLaughlin, K.T.-R., Saff, E.B.: Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle. Int. Math. Res. Notices 2006, Art. ID 91426, 1–43 (2006)

  31. Martinez-Finkelshtein, A., Orive, R.: Riemann–Hilbert analysis of Jacobi polynomials orthogonal on a single contour. J. Approx. Theory 134, 137-170 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Muskhelishvili, N.I.: Singular Integral Equations, 2nd ed. Dover Publ. Inc., New York (1992)

    Google Scholar 

  33. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974) (reprinted by Peters, A.K., Ltd., Wellesley 1997)

    Google Scholar 

  34. Qiu W.-Y., Wong, R.: Asymptotic expansion of the Krawchouk polynomials and their zeros. Comput. Method Function Theory 4, 189–226 (2004)

    MATH  MathSciNet  Google Scholar 

  35. Qiu W.-Y., Wong, R.: Riemann–Hilbert Method in Asymptotic Analysis of Orthogonal Polynomials, Analysis and Applications (2008) (to appear)

  36. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer-Verlag, Berlin (1997)

    MATH  Google Scholar 

  37. Szegö, G.: Orthogonal polynomials. Colloquium Publications, vol. 23. Amer. Math. Soc., Providence, R.I. (1939)

    Google Scholar 

  38. Vanlessen, M.: Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory. Constr. Approx. 25, 125–175 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, Z., Wong, R.: Uniform asymptotic expansion of J ν(νa) via a difference equation. Numer. Math. 91, 147–193 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, Z., Wong, R.: Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94, 147–194 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang, Z., Wong, R.: Linear difference equations with transition points. Math. Comp. 74, 629–653 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wang, Z., Wong, R., Uniform asymptotics for orthogonal polynomials with exponential weights—the Riemann–Hilbert approach. Stud. Appl. Math. 115, 139–155 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wang, Z., Wong, R.: Bessel-type asymptotic expansions via the Riemann–Hilbert approach. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 2839–2856 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, Z., Wong, R.: Uniform asymptotics of the Stieltjes–Wigert polynomials via the Riemann–Hilbert approach. J. Math. Pures Appl. 85(9), 698–718 (2006)

    MATH  MathSciNet  Google Scholar 

  45. Wong, R.: Asymptotic Approximations of Integrals. Academic Press, Boston (1989) (reprinted by SIAM, Philadelphia, 2001).

    MATH  Google Scholar 

  46. Wong, R., Li, H.: Asymptotic expansions for second order linear difference equations. J. Comput. Appl. Math. 41, 65–94 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  47. Wong, R., Zhang, L.: Global asymptotics of Hermite polynomials via Riemann–Hilbert approach. Discrete Contin. Dyn. Syst. Ser. B 7, 661–682 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wong, R., Zhang, W.-J.: Uniform asymptotics for Jacobi polynomials with varying large negative parameters—a Riemann–Hilbert approach. Trans. Amer. Math. Soc. 358, 2663–2694 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wong, R., Zhao, Y.-Q.: Estimates for the error term in a uniform asymptotic expansion of the Jacobi polynomials. Anal. Appl. 1, 213–241 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wong.

Additional information

In memory of our good friend Professor Luigi Gatteschi.

This author is supported partially by Chinese NNSF No.10571028.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, WY., Wong, R. Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach. Numer Algor 49, 331–372 (2008). https://doi.org/10.1007/s11075-008-9159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9159-x

Keywords

Navigation