Skip to main content
Log in

The isomonodromy approach to matric models in 2D quantum gravity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the double-scaling limit in the hermitian matrix model for 2D quantum gravity associated with the measure exp\(\sum\limits_{j = 1}^N {t_{j^{Z^{2j,} } } N \geqq 3} \). We show that after the appropriate modification of the contour of integration the Cross-Migdal-Douglas-Shenker limit to the Painlevé I equation (in the generic case of the pure gravity) is valid and calculate the nonperturbative parameters of the corresponding Painlevé function. Our approach is based on the WKB-analysis of the L-A pair corresponding to the discrete string equation in the framework of the Inverse Monodromy Method. Here we extend our results, which were obtained before for the particular casesN=2,3. Our analysis complements the isomonodromy approach proposed by G. Moore to the general string equations that come from the matrix model in the continuous limit and differ in that we apply the isomonodromy technique to investigate the double scaling limit itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gross, D., Migdal, A.: A nonperturbative treatment of two-dimensional quantum gravity. Princeton preprint PUPT-1159 (1989)

  2. Douglas, M., Shenker, S.: Strings in less than one dimension. Rutgers preprint RU-89-34

  3. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. IAS preprint, IASSNS-HEP-90/45

  4. David, F.: Loop equations and non-perturbative effects in two-dimensional quantum gravity. MPLA5 (13), 1019–1029 (1990)

    Google Scholar 

  5. Its, R.A., Kitaev, A.V., Fokas, A.S.: Isomonodromic approach in the theory of two-dimensional quantum gravity. Usp. Matem. Nauk45, 6 (276), 135–136 (1990) (in Russian)

    Google Scholar 

  6. Its, A.R., Kitaev, A.V.: Mathematical aspects of 2D quantum gravity. MPLA5 (25), 2079 (1990)

    Google Scholar 

  7. Fokas, A.S., Its, A.R., Kitaev, A.V.: Discrete Painlevé equations and their appearance in quantum gravity. Clarkson preprint, INS #164 (1990)

  8. Its, A.R., Kitaev, A.V., Fokas, A.S.: The matrix models of the two-dimensional quantum gravity and isomonodromic solutions of the discrete Painlevé equations; Kitaev, A.V.: Calculations of nonperturbation parameter in matrix modelΦ 4; Its, A.R., Kitaev, A.V.: Continuous limit for Hermitian matrix modelΦ 6. In the book: Zap. Nauch. Semin. LOMI, vol.187, 12; Differential eometry, Lie groups and mechanics (1991)

  9. Silvestrov, P.G., Yelkhovsky, A.S.: Two-dimensional gravity as analytical continuation of the random matrix model. INP preprint 90-81, Novosibirsk (1990)

  10. Moore, G.: Geometry of the string equations. Commun. Math. Phys.133, 261–304 (1990)

    Google Scholar 

  11. Moore, G.: Matrix models of 2D gravity and isomonodromic deformation. YCTP-P17-90, RU-90-53

  12. Kapaev, A.A.: Asymptotics of solutions of the Painlevé equation of the first kind. Diff. Equa.24 (10), 1684 (1988) [in Russian]

    Google Scholar 

  13. Manakov, S.V.: On complete integrability and stochastization in the discrete dynamical systems. Zh. Exp. Teor. Fiz.67 (2), 543–555 (1974)

    Google Scholar 

  14. Flaschka, H.: The Toda lattice II. Inverse scattering solution. Prog. Theor. Phys.51 (3), 703–716 (1974)

    Google Scholar 

  15. Kac, M., von Moerbeke, P.: Adv. Math.16, 160–164 (1975)

    Google Scholar 

  16. Douglas, M.: String in less than one dimension and the generalized KdV hierarchies. Rutgers University preprint

  17. Martinec, E.J.: On the origin of integrability in matrix models. Preprint EFI-90-67

  18. Fokas, A.S., Zhou, X.: On the solvability of Painlevé II and IV. Commun. Math. Phys.144, 601–622 (1992)

    Google Scholar 

  19. Its, A.R., Novokshenov, V.Yu.: The isomonodromic deformation method in the theory of Painlevé equations. Lect. Notes Math., vol.1191. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  20. Polyakov, A.M.: Phys. Lett. B103, 207 (1981)

    Google Scholar 

  21. Kazakov, V.A., Midgal, A.A.: Recent progress in the theory of noncritical strings. Nucl. Phys.B311, 171–190 (1988/89)

    Google Scholar 

  22. Bessis, D., Itzykson, C., Zuber, J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math.1, 109 (1980)

    Google Scholar 

  23. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Mod. Phys. Lett. A3, 819 (1988)

    Google Scholar 

  24. Distler, J., Kawai, H.: Conformal field theory and 2D quantum gravity. Nucl. Phys.B321, 509–527 (1989)

    Google Scholar 

  25. David, F.: Mod. Phys. Lett. A3, 1651 (1988)

    Google Scholar 

  26. Kitaev, A.V.: Turning points of linear systems and double asymptotics of the Painlevé transcendents. Zap. Nauch. Semin. LOMI187 (12), 53 (1991)

    Google Scholar 

  27. Kapaev, A.A.: Weak nonlinear solutions of theP 21 equation. Zap. Nauch. Semin. LOMI187, 12, Differential geometry, Lie groups, and mechanics, p. 88 (1991)

    Google Scholar 

  28. Novikov, S.P.: Quantization of finite-gap potentials and nonlinear quasiclassical approximation in nonperturbative string theory. Funkt. Analiz i Ego Prilozh.24 (4), 43–53 (1990)

    Google Scholar 

  29. Krichever, I.M.: On Heisenberg relations for the ordinary linear differential operators. ETH preprint (1990)

  30. Flaschka, H., Newell, A.C.: Commun. Math. Phys.76, 67 (1980)

    Google Scholar 

  31. Ueno, K.: Proc. Jpn. Acad. A56, 97 (1980); Jimbo, M., Miwa, T., Ueno, K.: Physica D2, 306 (1981); Jimbo, M., Miwa, T.: Physica D2, 407 (1981),4 D, 47 (1981); Jimbo, M.: Prog. Theor. Phys.61, 359 (1979)

    Google Scholar 

  32. Zhou, X.: SIAM J. Math.20 (4), 966–986 (1989)

    Google Scholar 

  33. Wasow, W.: The asymptotic expansions of the solutions of the ordinary differential equations

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Yu. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokas, A.S., Its, A.R. & Kitaev, A.V. The isomonodromy approach to matric models in 2D quantum gravity. Commun.Math. Phys. 147, 395–430 (1992). https://doi.org/10.1007/BF02096594

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096594

Keywords

Navigation