Skip to main content
Log in

Solitons, breathers and rational solutions for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper explores the Konopelchenko–Dubrovsky (KD) equation and employs Hirota’s bilinear method and Kadomtsev–Petviashvili (KP) hierarchy reduction technique to construct solitons, line breathers, rational solutions, and algebraic solitons within the system. These solutions are represented using \(N \times N\) determinants. When the determinant size N is odd, periodic background solutions are generated, while even N values yield solutions on constant backgrounds. By utilizing asymptotic analysis, the paper elucidates explicit expressions for asymptotic algebraic solitons localized in a straight line for the algebraic soliton solutions. The dynamics of the obtained solutions are further examined and illustrated through plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 6, 240–243 (1965)

    Article  Google Scholar 

  2. Shen, S., Yang, Z., Li, X., Zhang, S.: Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media. Commun. Nonlinear. Sci. 103, 106005 (2021)

    Article  MathSciNet  Google Scholar 

  3. Shen, S., Yang, Z.J., Pang, Z.G., Ge, Y.R.: The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics. Appl. Math. Lett. 125, 107755 (2022)

    Article  Google Scholar 

  4. Song, L.M., Yang, Z.J., Li, X.L., Zhang, S.M.: Coherent superposition propagation of Laguerre–Gaussian and Hermite–Gaussian solitons. Appl. Math. Lett. 102, 106114 (2020)

    Article  MathSciNet  Google Scholar 

  5. Yang, Z.J., Zhang, S.M., Li, X.L., Pang, Z.G., Bu, H.X.: High-order revivable complex-valued hyperbolic-sine-Gaussian solitons and breathers in nonlinear media with a spatial nonlocality. Nonlinear Dyn. 94, 2563–2573 (2018)

    Article  Google Scholar 

  6. Guo, J.L., Yang, Z.J., Song, L.M., Pang, Z.G.: Propagation dynamics of tripole breathers in nonlocal nonlinear media. Nonlinear Dyn. 101, 1147–1157 (2020)

    Article  Google Scholar 

  7. Sun, B.N., Wazwaz, A.M.: Interaction of lumps and dark solitons in the Melnikov equation. Nonlinear Dyn. 92, 2049–2059 (2018)

    Article  Google Scholar 

  8. Ohta, Y., Wang, D.S., Yang, J.K.: General N dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127, 345–371 (2011)

    Article  MathSciNet  Google Scholar 

  9. Francesco, C., Grinevich, P.G., Santini, P.M.: The periodic \(N\) breather anomalous wave solution of the Davey–Stewartson equations; first appearance, recurrence, and blow up properties. J. Phys. A Math. Theor. 57, 1–32 (2023)

    Google Scholar 

  10. Gao, Y.T., Tian, B.: Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves. Phys. Lett. A 349, 314–319 (2006)

    Article  Google Scholar 

  11. Tian, B., Gao, Y.T.: Symbolic-computation study of the perturbed nonlinear Schrödinger model in inhomogeneous optical fibers. Phys. Lett. A 342, 228–236 (2005)

    Article  Google Scholar 

  12. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  13. Matveev, V., Salle, M.: Darboux Transformation and Solitons. Springer-Verlag, Berlin (1991)

    Book  Google Scholar 

  14. Shen, Y., Bo, T., Zhou, T.Y., Gao, X.T.: N-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641–2649 (2022)

    Article  Google Scholar 

  15. Shen, Y., Bo, T., Zhou, T.Y., Cheng, C.D.: Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium. Chaos Solitons Fractals 171, 113497 (2023)

    Article  MathSciNet  Google Scholar 

  16. Hirota, R.: The Direct Methods in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  17. Shen, Y., Bo, T., Cheng, C.D., Zhou, T.Y.: N-soliton, Mth-order breather, Hth-order lump, and hybrid solutions of an extended (3+1)-dimensional Kadomtsev–Petviashvili equation. Nonlinear Dyn. 111, 10407–10424 (2023)

    Article  Google Scholar 

  18. Liu, S.H., Bo, T.: Singular soliton, shock-wave, breather-stripe soliton, hybrid solutions and numerical simulations for a (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada system in fluid mechanics. Nonlinear Dyn. 108, 2471–2482 (2022)

    Article  Google Scholar 

  19. An, Y.N., Guo, R.: The mixed solutions of the (2+ 1)-dimensional Hirota–Satsuma–Ito equation and the analysis of nonlinear transformed waves. Nonlinear Dyn. 111, 18291–18311 (2023)

    Article  Google Scholar 

  20. Niu, J.X., Guo, R., Zhang, J.W.: Solutions on the periodic background and transition state mechanisms for the higher-order Chen–Lee–Liu equation. Wave Motion 123, 103233 (2023)

    Article  MathSciNet  Google Scholar 

  21. Zhou, Y., Manukure, S., McAnally, M.: Lump and rogue wave solutions to a (2+ 1)-dimensional Boussinesq type equation. J. Geom. Phys. 167, 104275 (2021)

    Article  MathSciNet  Google Scholar 

  22. Kumar, S., Malik, S., Rezazadeh, H., Lanre, A.: The integrable Boussinesq equation and its breather, lump and soliton solutions. Nonlinear Dyn. 1–14 (2022)

  23. Ntiamoah, D., William, O., Lanre, A.: The higher-order modified Korteweg–de Vries equation: its soliton, breather and approximate solutions. J. Ocean Eng. Sci. (2022)

  24. Lanre, A.: Shallow ocean soliton and localized waves in extended (2+1)-dimensional nonlinear evolution equations. Phys. Lett. A 463, 128668 (2023)

    Article  MathSciNet  Google Scholar 

  25. Lanre, A., Morazara, E.: Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev–Petviashvili equation. Nonlinear Dyn. 111(5), 4683–4707 (2023)

    Article  Google Scholar 

  26. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Fang, Y.: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019)

    Article  MathSciNet  Google Scholar 

  27. Ohta, Y.: Dark soliton solution of Sasa–Satsuma equation. AIP Conf. Proc. 1212(1), 114–121 (2010)

    Article  MathSciNet  Google Scholar 

  28. Chen, J.C., Yong, C., Feng, B.F., Maruno, K., Ohta, Y.: General high-order rogue waves of the \((1+1)\)-dimensional Yajima–Oikawa system. J. Phys. Soc. Jpn. 87, 094007 (2017)

    Article  Google Scholar 

  29. Chen, J.C., Feng, B.F.: General bright and dark soliton solutions to the massive Thirring model via KP hierarchy reductions. Mathematics 1–27 (2021)

  30. Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A-Math. Phys. 468, 1716–1740 (2011)

    Article  Google Scholar 

  31. Ohta, Y., Yang, J.K.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A-Math. Theor. 46(10), 105202 (2013)

    Article  MathSciNet  Google Scholar 

  32. Ohta, Y., Yang, J.K.: General rogue waves in the focusing and defocusing Ablowitz–Ladik equations. J. Phys. A-Math. Theor. 47(25), 255201 (2014)

    Article  MathSciNet  Google Scholar 

  33. Rao, J., Porsezian, K., He, J.S.: Semi-rational solutions of the third-type Davey–Stewartson equation. Chaos 27(8), 083115 (2017)

    Article  MathSciNet  Google Scholar 

  34. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385–5409 (2018)

    Article  MathSciNet  Google Scholar 

  35. Liu, W., Zheng, X.X., Li, X.L.: Bright and dark soliton solutions to the partial reverse space-time nonlocal Melnikov equation. Nonlinear Dyn. 94, 2177–2189 (2018)

    Article  Google Scholar 

  36. Konopelchenko, B.G., Dubrovsky, V.G.: Some new integrable nonlinear evolution equations in \((2+ 1)\) dimensions. Phys. Lett. A. 102, 15–17 (1984)

    Article  MathSciNet  Google Scholar 

  37. Xu, X.G., Meng, X.H., Gao, Y.T.: Analytic N-solitary-wave solution of a variable-coefficient Gardner equation from fluid dynamics and plasma physics. Appl. Math. Comput. 210(2), 313–320 (2009)

    MathSciNet  Google Scholar 

  38. Wazwaz, A.M.: New solitons and kink solutions for the Gardner equation. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1395–1404 (2007)

    Article  MathSciNet  Google Scholar 

  39. Fu, Z., Liu, S.: New kinds of solutions to Gardner equation. Chaos Solitons Fractals 20(2), 301–309 (2004)

    Article  MathSciNet  Google Scholar 

  40. Wang, K.J.: Traveling wave solutions of the Gardner equation in dusty plasmas. Results Phys. 33, 105207 (2022)

    Article  Google Scholar 

  41. Wang, K.L.: Exact travelling wave solution for the local fractional Camassa–Holm–Kadomtsev–Petviashvili equation. Alex. Eng. J. 63, 371–376 (2023)

    Article  Google Scholar 

  42. Soomere, T.: Interaction of Kadomtsev–Petviashvili solitons with unequal amplitudes. Phys. Lett. A. 332, 74–81 (2004)

    Article  MathSciNet  Google Scholar 

  43. Yokus, A., Isah, M.A.: Stability analysis and solutions of \((2+ 1)\)-Kadomtsev–Petviashvili equation by homoclinic technique based on Hirota bilinear form. Nonlinear Dyn. 109, 3029–3040 (2022)

    Article  Google Scholar 

  44. Ismael, H.F., Murad, M.A.S., Bulut, H.: M-lump waves and their interaction with multi-soliton solutions for a generalized Kadomtsev–Petviashvili equation in \((3+ 1)\)-dimensions. Chin. J. Phys. 77, 1357–1364 (2022)

    Article  MathSciNet  Google Scholar 

  45. Sun, Z.Y., Gao, Y.T., Yu, X.: Inelastic interactions of the multiple-front waves for the modified Kadomtsev–Petviashvili equation in fluid dynamics, plasma physics and electrodynamics. Wave Motion 46, 511–521 (2009)

    Article  MathSciNet  Google Scholar 

  46. Xu, T., Zhang, H.Q., Zhang, Y.X., Li, J., Feng, Q., Tian, B.: Two types of generalized integrable decompositions and new solitary-wave solutions for the modified Kadomtsev–Petviashvili equation with symbolic computation. J. Math. Phys. 49, 013501 (2008)

    Article  MathSciNet  Google Scholar 

  47. Sheng, Z.: Symbolic computation and new families of exact non-travelling wave solutions of \((2+ 1)\)-dimensional Konopelchenko–Dubrovsky equations. Chaos Solitons Fractals 31, 951–959 (2007)

    Article  MathSciNet  Google Scholar 

  48. Wang, D.S., Zhang, H.Q.: Further improved F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation. Chaos Solitons Fractals 25(3), 601–610 (2005)

    Article  MathSciNet  Google Scholar 

  49. Ma, H.C., Bai, Y.X., Deng, A.P.: Multiple lump solutions of the \((2+ 1)\)-dimensional Konopelchenko–Dubrovsky equation. Math. Methods Appl. Sci. 43(12), 7135–7142 (2020)

    Article  MathSciNet  Google Scholar 

  50. Yuan, Y.Q., Tian, B., Liu, L., Wu, X.Y., Sun, Y.: Solitons for the \((2+ 1)\)-dimensional Konopelchenko–Dubrovsky equations. J. Math. Anal. Appl. 460(1), 476–486 (2018)

    Article  MathSciNet  Google Scholar 

  51. Gu, Y., Manafian, J., Malmir, S.: Lump, lump-trigonometric, breather waves, periodic wave and multi-waves solutions for a Konopelchenko–Dubrovsky equation arising in fluid dynamics. Int. J. Mod. Phys. B 37, 2350141 (2023)

    Article  Google Scholar 

  52. Xu, P.B., Gao, Y.T., Gai, X.L., Meng, D.X., Shen, Y.J., Wang, L.: Soliton solutions, Bäcklund transformation and Wronskian solutions for the extended \((2+1)\)-dimensional Konopelchenko–Dubrovsky equations in fluid mechanics. Appl. Math. Comput. 218, 2489–2496 (2011)

    MathSciNet  Google Scholar 

  53. Xu, P.B., Gao, Y.T., Yu, X., Wang, L., Lin, G.D.: Painlevé analysis, soliton solutions and Bäcklund transformation for extended \((2 + 1)\)-dimensional Konopelchenko–Dubrovsky equations in fluid mechanics via symbolic computation. Commun. Theor. Phys. 55, 1017–1023 (2011)

    Article  Google Scholar 

  54. Grinevich, P.G., Santini, P.M.: The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes. Russ. Math. Surv. 74, 211–263 (2018)

  55. Feng, B.F., Ling, L.M., Takahashi, D.A.: Multi-breather and high-order rogue waves for the nonlinear schrödinger equation on the elliptic function background. Stud. Appl. Math. 144, 46–101 (2020)

Download references

Acknowledgements

The authors are very grateful to all the members of our discussion group. This work has been supported by the National Natural Science Foundation of China (Nos. 12001241, 72174091); the Basic Research Program of Jiangsu Province (No. BK20230307); the Basic science research project of higher education in Jiangsu Province (No. 22KJB110014); the National Key R &D Program of China (No. 2020YFA0608601); the Major programs of the National Social Science Foundation of China (No. 22 &ZD136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Tian.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, MJ., Tian, LX., Shi, W. et al. Solitons, breathers and rational solutions for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09583-y

Keywords

Navigation