Skip to main content
Log in

Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev–Petviashvili equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we take into consideration a general form of the extended Kadomtsev–Petviashvili equation, which has several applications in applied sciences and engineering. The Painlevé analysis via WTC–Kruskal algorithm is first used to validate the integrability of this nonlinear model. Thereafter, we determine the multi-solitons, breather solutions, lump waves, rouge waves, lump with solitary waves interaction, and breather with solitons interaction by using various ansatz’s functions based on bilinear formalism and symbolic computation. The solitary wave ansatz method is used to extract the bight solitons, dark solitons, singular solitons, and the periodic function solutions. In addition, the Ma-breather, Kuznetsov–Ma breather, and their associated rogue wave solutions are also discussed. In order to demonstrate several physical structures, the figures relating to these solutions are illustrated by selecting appropriate parametric values in 2D, 3D, and contour plots with the assistance of the symbolic package Mathematica 13.1. The dynamics of nonlinear wave models are addressed by these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Seadawy, A.R.: Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas. Phys. Plasmas 21(5), 052107 (2014)

    Google Scholar 

  2. Abdou, M.A., Zhang, S.: New periodic wave solutions via extended mapping method. Commun. Nonlinear Sci. Numer. Simul. 14(1), 2–11 (2009)

    MATH  Google Scholar 

  3. Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    MATH  Google Scholar 

  4. Akinyemi, L., Şenol, M., Az-Zo’bi, E., Veeresha, P., Akpan, U.: Novel soliton solutions of four sets of generalized \((2+1)\)-dimensional Boussinesq–Kadomtsev–Petviashvili-like equations. Mod. Phys. Lett. B 36(01), 2150530 (2022)

    Google Scholar 

  5. Cheemaa, N., Seadawy, A.R., Rezazadeh, H.: Bright–dark solitary wave solutions of coupled integrable \((2+1)\)-dimensional Maccari system in applied physics. New Trends Phys. Sci. Res. 1, 31–45 (2022)

    Google Scholar 

  6. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192–1194 (1971)

    MATH  Google Scholar 

  7. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  8. Wazwaz, A.M.: Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method. Appl. Math. Comput. 182, 283–300 (2006)

    MATH  Google Scholar 

  9. Ntiamoah, D., Ofori-Atta, W., Akinyemi, L.: The higher-order modified Kortewegde Vries equation: its soliton, breather and approximate solutions. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.042

    Article  Google Scholar 

  10. Wazwaz, A.M.: Solitons and periodic solutions for the fifth-order KdV equation. Appl. Math. Lett. 19, 1162–1167 (2006)

    MATH  Google Scholar 

  11. Mirzazadeh, M., Eslami, M., Biswas, A.: Soliton solutions of the generalized Klein–Gordon equation by using \(G^{\prime }/G\)-expansion method. Comput. Appl. Math. 33(3), 831–839 (2014)

    MATH  Google Scholar 

  12. Jafari, H., Tajadodi, H., Baleanu, D.: Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. J. Comput. Nonlinear Dyn. 9(2), 021019–021021 (2014)

    Google Scholar 

  13. Lu, D., Zhang, Z.: Exact solutions for fractional nonlinear evolution equations by the F-expansion method. Int. J. Nonlinear Sci. 24(2), 96–103 (2017)

    MATH  Google Scholar 

  14. Akinyemi, L., Hosseini, K., Salahshour, S.: The bright and singular solitons of \((2+1)\)-dimensional nonlinear Schrödinger equation with spatio-temporal dispersions. Optik 242, 167120 (2021)

    Google Scholar 

  15. Rezazadeh, H.: New solitons solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity. Optik 167, 218–227 (2018)

    Google Scholar 

  16. Zhang, S., Xia, T.: A generalized new auxiliary equation method and its applications to nonlinear partial differential equations. Phys. Lett. A 363(5–6), 356–360 (2007)

    MATH  Google Scholar 

  17. Mathanaranjan, T., Kumar, D., Rezazadeh, H., Akinyemi, L.: Optical solitons in metamaterials with third and fourth order dispersions. Opt. Quantum Electron. 54(5), 1–15 (2022)

    Google Scholar 

  18. Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)

    MATH  Google Scholar 

  19. Manukure, S., Booker, T.: A short overview of solitons and applications. Partial Differ. Equ. Appl. Math. 4, 100140 (2021)

    Google Scholar 

  20. Kuwayama, H., Ishida, S.: Biological soliton in multicellular movement. Sci. Rep. 3(1), 1–5 (2013)

    Google Scholar 

  21. Davydov, A.S.: Solitons in molecular systems. Phys. Scr. 20, 387–394 (1979)

    MATH  Google Scholar 

  22. Careri, G., Wyman, J.: Soliton-assisted unidirectional circulation in a biochemical cycle. Proc. Natl. Acad. Sci. 81, 4386–4388 (1984)

    Google Scholar 

  23. Abbagari, S., Houwe, A., Akinyemi, L., Saliou, Y., Bouetou, T.B.: Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain. Chaos Solitons Fractals 160, 112255 (2022)

    MATH  Google Scholar 

  24. Yu, J., Wang, F., Ma, W., Sun, Y., Khalique, C.M.: Multiple-soliton solutions and lumps of a \((3+1)\)-dimensional generalized KP equation. Nonlinear Dyn. 95(2), 1687–1692 (2019)

    MATH  Google Scholar 

  25. Li, B.Q., Ma, Y.L.: Multiple-lump waves for a \((3+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid. Comput. Math. Appl. 76(1), 204–214 (2018)

    MATH  Google Scholar 

  26. Ma, Y.L., Li, B.Q.: Analytic rogue wave solutions for a generalized fourth-order Boussinesq equation in fluid mechanics. Math. Methods Appl. Sci. 42, 39–48 (2019)

    MATH  Google Scholar 

  27. Wang, C.J., Fang, H., Tang, X.X.: State transition of lump-type waves for the \((2+1)\)-dimensional generalized KdV equation. Nonlinear Dyn. 95, 2943–2961 (2019)

    MATH  Google Scholar 

  28. Houwe, A., Souleymanou, A., Akinyemi, L., Doka, S.Y., Inc, M.: Discrete breathers incited by the intra-dimers parameter in microtubulin protofilament array. Eur. Phys. J. Plus 137(4), 1–7 (2022)

    Google Scholar 

  29. Chabchoub, A., Kibler, B., Dudley, J.M., Akhmediev, N.: Hydrodynamics of periodic breathers. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 372(2027), 4152–4160 (2014)

    Google Scholar 

  30. Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh–coth method. Appl. Math. Comput. 190(1), 633–640 (2007)

    MATH  Google Scholar 

  31. Biondini, G., Kodama, Y.: On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy. J. Phys. A: Math. Gen. 36(42), 10519 (2003)

    MATH  Google Scholar 

  32. Biondini, G., Chakravarty, S.: Soliton solutions of the Kadomtsev–Petviashvili II equation. J. Math. Phys. 47(3), 1–26 (2006)

    MATH  Google Scholar 

  33. Dai, Z., Lin, S., Fu, H., Zeng, X.: Exact three-wave solutions for the KP equation. Appl. Math. Comput. 216(5), 1599–1604 (2010)

    MATH  Google Scholar 

  34. Manukure, S., Zhou, Y., Ma, W.X.: Lump solutions to a \((2+1)\)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414–2419 (2018)

    MATH  Google Scholar 

  35. Peckan, A.: The Hirota Direct Method (Masters thesis), Bilkent University (2005)

  36. Ahmed, I., Seadawy, A.R., Lu, D.: Mixed lump-solitons, periodic lump and breather soliton solutions for \((2+1)\)-dimensional extended Kadomtsev–Petviashvili dynamical equation. Int. J. Mod. Phys. B 33(05), 1950019 (2019)

    MATH  Google Scholar 

  37. Guo, J., He, J., Li, M., Mihalache, D.: Exact solutions with elastic interactions for the \((2+1)\)-dimensional extended Kadomtsev–Petviashvili equation. Nonlinear Dyn. 101(4), 2413–2422 (2020)

    Google Scholar 

  38. Guo, J., He, J., Li, M., Mihalache, D.: Exact solutions with elastic interactions for the \((2+1)\)-dimensional extended Kadomtsev–Petviashvili equation. Nonlinear Dyn. 101, 2413–2422 (2020)

    Google Scholar 

  39. Wazwaz, A.M.: Extended KP equations and extended system of KP equations: multiple-soliton solutions. Can. J. Phys. 89, 739–743 (2011)

    Google Scholar 

  40. Guan, X., Liu, W., Zhou, Q., Biswas, A.: Some lump solutions for a generalized \((3+1)\)-dimensional Kadomtsev–Petviashvili equation. Appl. Math. Comput. 366, 124757 (2020)

    MATH  Google Scholar 

  41. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104(2), 1581–1594 (2021)

    Google Scholar 

  42. Li, L., Xie, Y., Yan, Y., Wang, M.: A new extended \((2+1)\)-dimensional Kadomtsev–Petviashvili equation with N-solitons, periodic solutions, rogue waves, breathers and lump waves. Results Phys 39, 105678 (2022)

    Google Scholar 

  43. Fordy, A., Pickering, A.: Analysing negative resonances in the Painlevé test. Phys. Lett. A 160(4), 347–354 (1991)

    Google Scholar 

  44. Xu, G.: The soliton solutions, dromions of the Kadomtsev–Petviashvili and Jimbo–Miwa equations in \((3+1)\)-dimensions. Chaos Solitons Fractals 30(1), 71–76 (2006)

  45. Ma, Y.L.: N-solitons, breathers and rogue waves for a generalized Boussinesq equation. Int. J. Comput. Math. 97(8), 1648–1661 (2020)

Download references

Acknowledgements

The authors would like to thank the EXCEL Scholars Program and the Department of Mathematics at Lafayette College for their support of this project.

Funding

No funding available for this project.

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript.

Corresponding author

Correspondence to Lanre Akinyemi.

Ethics declarations

Ethics approval

Not applicable

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinyemi, L., Morazara, E. Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev–Petviashvili equation. Nonlinear Dyn 111, 4683–4707 (2023). https://doi.org/10.1007/s11071-022-08087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08087-x

Keywords

Navigation