Skip to main content
Log in

Painlevé analysis, auto-Bäcklund transformations, bilinear form and analytic solutions on some nonzero backgrounds for a \((2{+}1)\)-dimensional generalized nonlinear evolution system in fluid mechanics and plasma physics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fluid mechanics concerns the mechanisms of liquids, gases and plasmas and the forces on them. We aim to investigate a \((2+1)\)-dimensional generalized nonlinear evolution system in fluid mechanics and plasma physics in this paper. With the help of the Painlevé analysis, we find that the above system has Painlevé-integrable property. A set of the auto-Bäcklund transformations and some solutions are derived by the virtue of the truncated Painlevé method. We obtain certain bilinear forms via some seed solutions. According to the mentioned bilinear form, we derive the multiple-soliton solutions on some nonzero backgrounds. Based on the soliton solutions and conjugation transformations, the higher-order breather solutions on certain nonzero backgrounds have been obtained. Via some conjugation transformations, hybrid solutions formed from the breathers and solitons on certain nonzero backgrounds have been derived. We also graphically show the interactions between those solitons and breathers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. The bilinear form in this paper is different from those in Refs. [11, 12].

  2. This symbol calculation method based on the neural networks may present a general symbolic computing path for the analytic solutions of the nonlinear partial differential equations [24,25,26,27, 48,49,50,51].

References

  1. Ghommem, M., Najar, F., Arabi, M., Abdel-Rahman, E., Yavuz, M.: A unified model for electrostatic sensors in fluid media. Nonlinear Dyn. 101, 271 (2020)

    Article  Google Scholar 

  2. Eivazi, H., Tahani, M., Schlatter, P., Vinuesa, R.: Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations. Phys. Fluids 34, 075117 (2022)

    Article  Google Scholar 

  3. Shohaib, M., Masood, W., Alyousef, H.A., Siddiq, M., El-Tantawy, S.A.: Formation and interaction of multi-dimensional electrostatic ion-acoustic solitons in two-electron temperature plasmas. Phys. Fluids 34, 093107 (2022)

    Article  Google Scholar 

  4. Kumar, S., Jiwari, R., Mittal, R.C., Awrejcewicz, J.: Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model. Nonlinear Dyn. 104, 661 (2021)

    Article  Google Scholar 

  5. Wazwaz, A.M.: Two new Painlevé integrable KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation. Nonlinear Dyn. 104, 4311 (2021)

    Article  Google Scholar 

  6. Kumar, S., Kumar, A.: Abundant closed-form wave solutions and dynamical structures of soliton solutions to the (3+1)-dimensional BLMP equation in mathematical physics. J. Ocean Eng. Sci. 7, 178 (2022)

    Article  MathSciNet  Google Scholar 

  7. Arora, G., Bandyopadhyay, P., Hariprasad, M.G., Sen, A.: Experimental observation of pinned solitons in a flowing dusty plasma. Phys. Rev. E 103, 013201 (2021)

    Article  Google Scholar 

  8. Stalin, S., Ramakrishnan, R., Lakshmanan, M.: Dynamics of nondegenerate vector solitons in a long-wave-short-wave resonance interaction system. Phys. Rev. E 105, 044203 (2022)

    Article  MathSciNet  Google Scholar 

  9. Wu, X.H., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. 111, 5641 (2023)

    Article  Google Scholar 

  10. Ndebele, K.K., Tabi, C.B., Tiofack, C.G.L., Kofané, T.C.: Higher-order dispersion and nonlinear effects of optical fibers under septic self-steepening and self-frequency shift. Phys. Rev. E 104, 044208 (2021)

    Article  Google Scholar 

  11. Ma, W.X.: N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. Math. Comput. Simul. 190, 270 (2021)

    Article  MathSciNet  Google Scholar 

  12. Cheng, C.D., Tian, B., Ma, Y.X., Zhou, T.Y., Shen, Y.: Pfaffian, breather, and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics. Phys. Fluids 34, 115132 (2022)

    Article  Google Scholar 

  13. Zhou, T.Y., Tian, B., Shen, Y., Cheng, C.D.: Lie symmetry analysis, optimal system, symmetry reductions and analytic solutions for a (2+1)-dimensional generalized nonlinear evolution system in a fluid or a plasma. Chin. J. Phys. 84, 343 (2023)

    Article  MathSciNet  Google Scholar 

  14. Khan, K., Akbar, M.A.: Exact traveling wave solutions of Kadomtsev–Petviashvili equation. J. Egypt. Math. Soc. 23, 278 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  Google Scholar 

  16. Wazwaz, A.M.: Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method. Chaos Solitons Fract. 12, 2283 (2001)

    Article  MathSciNet  Google Scholar 

  17. Kuo, C.K., Ma, W.X.: A study on resonant multi-soliton solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equations via the linear superposition principle. Nonlinear Anal. 190, 111592 (2020)

    Article  MathSciNet  Google Scholar 

  18. Dubrovsky, V.G., Konopelchenko, B.G.: Delta-dressing and exact solutions for the (2+1)-dimensional Harry Dym equation. J. Phys. A Math. Gen. 27, 4619 (1994)

    Article  Google Scholar 

  19. Dai, C.Q.: Exotic localized structures based on variable separation solution of the (2+1)-dimensional Kortweg-de Vries equation. Phys. Script. 75, 310 (2007)

    Article  MathSciNet  Google Scholar 

  20. Gao, X.Y.: Oceanic shallow-water investigations on a generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt system. Phys. Fluids 35, 127106 (2023)

    Article  Google Scholar 

  21. Cheng, C.D., Tian, B., Shen, Y., Zhou, T.Y.: Bilinear form, auto-Backlund transformations, Pfaffian, soliton, and breather solutions for a (3+1)-dimensional extended shallow water waveequation. Phys. Fluids 35, 087123 (2023)

    Article  Google Scholar 

  22. Feng, C.H., Tian, B., Yang, D.Y., Gao, X.T.: Lump and hybrid solutions for a (3+1)-dimensional Boussinesq-type equation for the gravity waves over a water surface. Chin. J. Phys. 83, 515 (2023)

    Article  MathSciNet  Google Scholar 

  23. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: N-soliton, Mth-order breather, Hth-order lump, and hybrid solutions of an extended (3+1)-dimensional Kadomtsev–Petviashvili equation. Nonlinear Dyn. 111, 10407 (2023)

    Article  Google Scholar 

  24. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521 (2022)

    Article  Google Scholar 

  25. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041 (2019)

    Article  Google Scholar 

  26. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 103, 1071 (2021)

    Article  Google Scholar 

  27. Zhang, R.F., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122 (2021)

    Article  MathSciNet  Google Scholar 

  28. Wu, X.H., Gao, Y.T.: Generalized Darboux transformation and solitons for the Ablowitz–Ladik equation in an electrical lattice. Appl. Math. Lett. 137, 108476 (2023)

    Article  MathSciNet  Google Scholar 

  29. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: \(N\)-fold generalized Darboux transformation and asymptotic analysis of the degenerate solitons for the Sasa–Satsuma equation in fluid dynamics and nonlinear optics. Nonlinear Dyn. 111, 16339 (2023)

    Article  Google Scholar 

  30. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: N-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641 (2023)

    Article  Google Scholar 

  31. Shen, Y., Tian, B., Yang, D.Y., Zhou, T.Y.: Hybrid relativistic and modified Toda lattice-type system: equivalent form, N-fold Darboux transformation and analytic solutions. Eur. Phys. J. Plus 138, 744 (2023)

    Article  Google Scholar 

  32. Gao, X.Y.: Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 86, 572–577 (2023)

    Article  MathSciNet  Google Scholar 

  33. Gao, X.Y., Guo, Y.J., Shan, W.R.: Ultra-short optical pulses in a birefringent fiber via a generalized coupled Hirota system with the singular manifold and symbolic computation. Appl. Math. Lett. 140, 108546 (2023)

    Article  MathSciNet  Google Scholar 

  34. Gao, X.Y., Guo, Y.J., Shan, W.R.: On the oceanic/laky shallow-water dynamics through a Boussinesq-Burgers system. Qual. Theory Dyn. Syst. 23, 57 (2024)

    Article  MathSciNet  Google Scholar 

  35. Gao, X.Y., Guo, Y.J., Shan, W.R.: On a generalized Broer–Kaup–Kupershmidt system for the long waves in shallow water. Nonlinear Dyn. 111, 9431 (2023)

    Article  Google Scholar 

  36. Gao, X.Y., Guo, Y.J., Shan, W.R.: Theoretical investigations on a variable-coefficient generalized forced-perturbed Korteweg-de Vries-Burgers model for a dilated artery, blood vessel or circulatory system with experimental support. Commun. Theor. Phys. 75, 115006 (2023)

    Article  MathSciNet  Google Scholar 

  37. Gao, X.Y.: Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system. Appl. Math. Lett. 152, 109018 (2024)

    Article  MathSciNet  Google Scholar 

  38. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti–Leon–Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    Article  MathSciNet  Google Scholar 

  39. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  40. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522 (1983)

    Article  MathSciNet  Google Scholar 

  41. Zhang, Y., Dong, H.H.: Robust inverse scattering method to the complex modified Korteweg-de Vries equation with nonzero background condition. Phys. Lett. A 449, 128359 (2022)

    Article  MathSciNet  Google Scholar 

  42. Zhou, T.Y., Tian, B., Shen, Y., Gao, X.T.: Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid. Nonlinear Dyn. 111, 8647 (2023)

    Article  Google Scholar 

  43. Guo, N., Xu, J., Wen, L., Fan, E.G.: Rogue wave and multi-pole solutions for the focusing Kundu–Eckhaus equation with nonzero background via Riemann–Hilbert problem method. Nonlinear Dyn. 103, 1851 (2021)

    Article  Google Scholar 

  44. Peng, W.Q., Pu, J.C., Chen, Y.: PINN deep learning method for the Chen-Lee-Liu equation: rogue wave on the periodic background. Commun. Nonlinear Sci. Numer. Simul. 105, 106067 (2022)

    Article  MathSciNet  Google Scholar 

  45. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417 (2022)

    Article  Google Scholar 

  46. Joshi, N., Kruskal, M.D.: An asymptotic approach to the connection problem for the first and the second Painlevé equations. Phys. Lett. A 130, 129 (1988)

    Article  MathSciNet  Google Scholar 

  47. Kaur, L., Wazwaz, A.M.: Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469 (2018)

  48. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fract. 154, 111692 (2022)

    Article  MathSciNet  Google Scholar 

  49. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  Google Scholar 

  50. Zhang, R.F., Li, M.C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637 (2023)

    Article  Google Scholar 

  51. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Script. 96, 025224 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by BUPT Excellent Ph.D. Students Foundation under Grant No. CX2023302.

Funding

BUPT Excellent Ph.D. Students Foundation under Grant No. CX2023302.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-Yu Zhou or Bo Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, TY., Tian, B., Shen, Y. et al. Painlevé analysis, auto-Bäcklund transformations, bilinear form and analytic solutions on some nonzero backgrounds for a \((2{+}1)\)-dimensional generalized nonlinear evolution system in fluid mechanics and plasma physics. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09450-w

Keywords

Navigation