Skip to main content
Log in

Painlevé analysis, bilinear form, Bäcklund transformation, solitons, periodic waves and asymptotic properties for a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the investigation is conducted on a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma. We conduct the Painlevé analysis and find that it fails to pass the Painlevé test. Bilinear form, Bäcklund transformation and soliton solutions are derived with the help of the Hirota method. By means of the Riemann theta function method, we obtain the one-periodic wave solutions. We derive the amplitude, velocity and direction of propagation for the one soliton, and find that the coefficients in the system affect the velocities of the one/two solitons, but the amplitudes and propagation directions of the one/two solitons keep unchanged. We graphically demonstrate that the interaction between the two solitons is elastic and analyse the effects of the coefficients in the system on the solitons and periodic waves. We analyse the asymptotic properties of the one-periodic wave solutions which reveal the connection between the one-periodic wave solutions and the one-soliton solutions, i.e., the one-periodic wave solutions tend to the one-soliton solutions under the limit process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.P. Sapsis, Annu. Rev. Fluid Mech. (2020). https://doi.org/10.1146/annurev-fluid-030420-032810

    Article  Google Scholar 

  2. H. Aref, S. Balachandar, A First Course in Computational Fluid Dynamics (Cambridge Univ. Press, Cambridge, 2018)

    Book  Google Scholar 

  3. G. Falkovich, Fluid Mechanics (Cambridge Univ. Press, Cambridge, 2018)

    Book  Google Scholar 

  4. R.J. Goldston, Introduction to Plasma Physics (CRC Press, Bristol, 2020)

    Book  Google Scholar 

  5. E.M. Zayed, M.E. Alngar, A. Biswas, M. Asma, M. Ekici, A.K. Alzahrani, M.R. Belic, Chaos. Solitons Fract. 139, 110284 (2020)

  6. N.A. Kudryashov, Appl. Math. Comput. 344, 97 (2019)

    MathSciNet  Google Scholar 

  7. N. Cheemaa, A.R. Seadawy, S. Chen, Eur. Phys. J. Plus 134, 117 (2019)

    Article  Google Scholar 

  8. J.M. Dudley, G. Genty, A. Mussot, A. Chabchoub, F. Dias, Nat. Rev. Phys. 1, 675 (2019)

    Article  Google Scholar 

  9. A. Yokuş, H. Durur, K.A. Abro, D. Kaya, Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  10. M.S. Ullah, M.Z. Ali, H.O. Roshid, M.F. Hoque, Eur. Phys. J. Plus 136, 1 (2021)

    Article  Google Scholar 

  11. S. Singh, K. Sakkaravarthi, K. Murugesan, R. Sakthivel, Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  12. A.M. Wazwaz, L. Kaur, Nonlinear Dyn. 97, 83 (2019)

    Article  Google Scholar 

  13. S.M. Mabrouk, A.S. Rashed, Chin. J. Phys. 60, 48 (2019)

    Article  Google Scholar 

  14. W. Liu, Y. Zhang, Phys. Scripta 95, 045204 (2020)

    Article  ADS  Google Scholar 

  15. Y. J. Feng, Y. T. Gao, L. Q. Li, T. T. Jia, Eur. Phys. J. Plus 135, 272 (2020)

  16. Y. J. Feng, Y. T. Gao, T. T. Jia and L. Q. Li, Mod. Phys. Lett. B 33, 1950354 (2019)

  17. J.J. Su, Y.T. Gao, G.F. Deng, T.T. Jia, Phys. Rev. E 100, 042210 (2019)

  18. J.J. Su, Y.T. Gao, C.C. Ding, Appl. Math. Lett. 88, 201 (2019)

  19. L. Hu, Y.T. Gao, S.L. Jia, J.J. Su, G.F. Deng, Mod. Phys. Lett. B 33 1950376 (2019)

  20. L. Hu, Y.T. Gao, T.T. Jia, G.F. Deng, L.Q. Li, Z. Angew. Math. Phys. 72, 75 (2021)

  21. T.T. Jia, Y.T. Gao, X. Yu, L.Q. Li, Appl. Math. Lett. 114, 106702 (2021)

  22. T.T. Jia, Y.T. Gao, G.F. Deng, L. Hu, Nonlinear Dyn. 98, 269 (2019)

  23. G.F. Deng, Y.T. Gao, C.C. Ding, J.J. Su, Chaos Solitons Fract. 140, 110085 (2020)

  24. G.F. Deng, Y.T. Gao, J.J. Su, C.C. Ding, T.T. Jia, Nonlinear Dyn. 99, 1039 (2020)

  25. L.Q. Li, Y.T. Gao, L. Hu, T.T. Jia, C.C. Ding, Y.J. Feng, Nonlinear Dyn. 100, 2729 (2020)

  26. C.C. Ding, Y.T. Gao, G.F. Deng, D. Wang, Chaos Solitons Fract. 133, 109580 (2020)

  27. C.C. Ding, Y.T. Gao, G.F. Deng, Nonlinear Dyn. 97, 2023 (2019)

  28. F. Y. Liu, Y. T. Gao, X. Yu, C. C. Ding, G. F. Deng, T. T. Jia, Chaos Solitons Fract. 144, 110559 (2021)

  29. F. Y. Liu, Y. T. Gao, X. Yu, L. Q. Li, C. C. Ding, D. Wang, Eur. Phys. J. Plus 136, 656 (2021)

  30. X. Y. Gao, Y. J. Guo, W. R. Shan, Appl. Math. Lett. 104, 106170 (2020)

  31. X. Y. Gao, Y. J. Guo, W. R. Shan, Chaos Solitons Fract. 138, 109950 (2020)

  32. M. Li, T. Xu, Phys. Rev. E 91, 033202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. C.N. Kumar, R. Gupta, A. Goyal, S. Loomba, T.S. Raju, P.K. Panigrahi, Phys. Rev. A 86, 025802 (2012)

    Article  ADS  Google Scholar 

  34. M. Gürses, A. Pekcan, Commun. Nonlinear Sci. Numer. Simul. 67, 427 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. S.J. Chen, W.X. Ma, X. Lü, Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    Article  MathSciNet  Google Scholar 

  36. F. Yu, L. Li, Appl. Math. Lett. 91, 41 (2019)

    Article  MathSciNet  Google Scholar 

  37. S. Sahoo, G. Garai, S.S. Ray, Nonlinear Dyn. 87, 1995 (2017)

    Article  Google Scholar 

  38. B.Q. Li, Y.L. Ma, Comput. Math. Appl. 77, 514 (2019)

    Article  MathSciNet  Google Scholar 

  39. K.R. Khusnutdinova, Y.A. Stepanyants, M.R. Tranter, Phys. Fluids 30, 022104 (2018)

    Article  ADS  Google Scholar 

  40. A.M. Wazwaz, Appl. Math. Lett. 52, 74 (2016)

    Article  MathSciNet  Google Scholar 

  41. M. Kumar, A.K. Tiwari, R. Kumar, Comput. Math. Appl. 74, 2599 (2017)

    Article  MathSciNet  Google Scholar 

  42. S.T. Chen, W.X. Ma, Comput. Math. Appl. 76, 1680 (2018)

    Article  MathSciNet  Google Scholar 

  43. A.R. Seadawy, Comput. Math. Appl. 62, 3741 (2011)

    Article  MathSciNet  Google Scholar 

  44. S.T. Chen, W.X. Ma, Front. Math. China 13, 525 (2018)

    Article  MathSciNet  Google Scholar 

  45. X. Lü, M. Peng, Nonlinear Dyn. 73, 405 (2013)

    Article  Google Scholar 

  46. T.T. Jia, Y.T. Gao, Y.J. Feng, L. Hu, J.J. Su, L.Q. Li, C.C. Ding, Nonlinear Dyn. 96, 229 (2019)

    Article  Google Scholar 

  47. J. Lin, H.M. Li, Z. Naturforsch, A 57, 929 (2002)

  48. R. Hirota, J. Math. Phys. 14, 805 (1973)

    Article  ADS  Google Scholar 

  49. R. Hirota, The Direct Method in Soliton Theory (Cambridge Univ. Press, New York, 2004)

    Book  Google Scholar 

  50. X.B. Wang, S.F. Tian, L.L. Feng, H. Yan, T.T. Zhang, Nonlinear Dyn. 88, 2265 (2017)

    Article  Google Scholar 

  51. S.F. Tian, H.Q. Zhang, Chaos. Solitons Fract. 47, 27 (2013)

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SH., Tian, B. & Wang, M. Painlevé analysis, bilinear form, Bäcklund transformation, solitons, periodic waves and asymptotic properties for a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma. Eur. Phys. J. Plus 136, 917 (2021). https://doi.org/10.1140/epjp/s13360-021-01828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01828-8

Keywords

Navigation